Skip to main content
Log in

The Improvement of Performance for Continuous-Variable Quantum Key Distribution with Imperfect Gaussian Modulation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Gaussian modulation is one of the key steps for the implementation of continuous-variable quantum key distribution (CVQKD) schemes. However, imperfection in the Gaussian modulation may introduce modulation noise that can deteriorate the performance of CVQKD systems. In this paper, we mainly investigate how to improve the performance of a CVQKD system from different aspects. First, we explore the several different origins, impacts and monitoring schemes for the modulation noise in detail. Then, we discuss the practical performance of a CVQKD system with an untrusted noise model and neutral party model, respectively. These analyses indicate that the neutral party model should be reasonably regarded as a general noise model, which will passively and greatly raise the performance of the system. Further, we propose a dynamic auto-bias control scheme to actively resist the modulation noise which comes from the drift of bias point of the amplitude modulator. Together these methods contribute to the improvement of the practical performance of CVQKD systems with imperfect Gaussian modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  4. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  5. Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  6. Grosshans, F., Van Assche, G., Wenger, J., Tualle-Brouri, R., Cerf, N.J., Grangier, P.: High-rate quantum cryptography using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  MATH  Google Scholar 

  7. Qi, B., Huang, L.-L., Qian, L., Lo, H.-K.: Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Physical Review A 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  8. Fossier, S., Diamanti, E., Debuisschert, T., Tuallebrouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B 42(11), 114014 (2009)

    Article  ADS  Google Scholar 

  9. Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Tuallebrouri, R., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. New J. Phys 11(4), 045023 (2009)

    Article  ADS  Google Scholar 

  10. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110(3), 030502 (2013)

    Article  ADS  Google Scholar 

  11. Jouguet, P., Kunzjacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378–381 (2012)

    Article  ADS  Google Scholar 

  12. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  13. Huang, D., Huang, P., Li, H., Wang, T., Zhou, Y., Zeng, G.: Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett. 41(15), 3511–3514 (2016)

    Article  ADS  Google Scholar 

  14. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuousvariable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  15. Wang, C., Huang, D., Huang, P., Lin, D., Peng, J., Zeng, G.: 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep. 5, 14607 (2015)

    Article  ADS  Google Scholar 

  16. Chai, G., Cao, Z., Liu, W., Wang, S., Huang, P., Zeng, G.: Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 99(3), 032326 (2019)

    Article  ADS  Google Scholar 

  17. Wang, S., Huang, P., Wang, T., Zeng, G.: Atmospheric effects on continuous-variable quantum key distribution. New J. Phys. 20(8), 083037 (2018)

    Article  ADS  Google Scholar 

  18. Guo, Y., Xie, C., Liao, Q., Zhao, W., Zeng, G., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)

    Article  ADS  Google Scholar 

  19. Guo, Y., Xie, C., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 97(5), 052326 (2018)

    Article  ADS  Google Scholar 

  20. Jouguet, P., Kunzjacques, S., Diamanti, E., Leverrier, A.: Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86(3), 6429–6440 (2012)

    Article  Google Scholar 

  21. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  22. Ma, X.C., Sun, S.H., Jiang, S.M., Liang, L.M.: Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-keydistribution systems. Phys. Rev. A 88(2), 290–296 (2014)

    Google Scholar 

  23. Jouguet, P., Kunzjacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 4996–4996 (2013)

    Article  Google Scholar 

  24. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on continuousvariable quantum key distribution system using a wavelength attack. Phys. Rev. A 87(6), 1993–2001 (2013)

    Google Scholar 

  25. Ma, X.C., Sun, S.H., Jiang, S.M., Liang, L.M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87(5), 52309 (2014)

    Article  Google Scholar 

  26. Qin, H., Kumar, R., Allaume, R.: Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution, Physical Review A, 94(1) (2016)

  27. Wang, C., Huang, P., Huang, D., Lin, D., Zeng, G.: Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects. Physical Review A, 93(2) (2016)

  28. Xie, C., Guo, Y., Liao, Q., Zhao, W., Huang, D., Zhang, L., Zeng, G.: Practical security analysis of continuous-variable quantum key distribution with jitter in clock synchronization. Phys. Lett. A 382(12), 811–817 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhao, Y., Zhang, Y., Huang, Y., Xu, B., Yu, S., Guo, H.: Polarization attack on continuous-variable quantum key distribution. J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2018)

    Article  ADS  Google Scholar 

  30. Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)

    Article  Google Scholar 

  31. Huang, P., Lin, D.-K., Huang, D., Zeng, G.-H.: Security of continuousvariable quantum key distribution with imperfect phase compensation. Int. J. Theor. Phys. 54(8), 2613–2622 (2015)

    Article  MATH  Google Scholar 

  32. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    Article  ADS  Google Scholar 

  33. Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77(2), 022310 (2008)

    Article  ADS  Google Scholar 

  34. Usenko, V.C., Filip, R.: Feasibility of continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 81(2), 022318 (2010)

    Article  ADS  Google Scholar 

  35. Shen, Y., Peng, X., Yang, J., Guo, H.: Continuous-variable quantum key distribution with gaussian source noise. Phys. Rev. A 83(5), 052304 (2011)

    Article  ADS  Google Scholar 

  36. Liu, W., Wang, X., Wang, N., Du, S., Li, Y.: Imperfect state preparation in continuous-variable quantum key distribution. Phys. Rev. A 96(4), 042312 (2017)

    Article  ADS  Google Scholar 

  37. Li, Y., Zhang, Y., Huang, Y.: Slope value detection-based ditherless bias control technique for mach-zehnder modulator. Opt. Eng. 52(8), 087109 (2013)

    Article  ADS  Google Scholar 

  38. Fung, C.-H.F., Qi, B., Tamaki, K., Lo, H.-K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75(3), 032314 (2007)

    Article  ADS  Google Scholar 

  39. Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    Article  ADS  Google Scholar 

  40. Laudenbach, F., Pacher, C., Fung, C.-H.F., Poppe, A., Peev, M., Schrenk, B., Hentschel, M., Walther, P., Hübel, H.: Continuous-variable quantum key distribution with gaussian modulationthe-The theory of practical implementations. Adv. Quant. Tech. 1(1), 1800011 (2018)

    Article  Google Scholar 

  41. Huang, P., He, G.-Q., Zeng, G.-H.: Bound on noise of coherent source for secure continuous-variable quantum key distribution. Int. J. Theor. Phys. 52(5), 1572–1582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, Y., Yang, J., Guo, H.: Security bound of continuous-variable quantum key distribution with noisy coherent states and channel. J. Phys. B: At., Mol. Opt. Phys. 42(23), 235506 (2009)

    Article  ADS  Google Scholar 

  43. Yang, J., Xu, B., Guo, H.: Source monitoring for continuous-variable quantum key distribution. Phys. Rev. A 86(4), 042314 (2012)

    Article  ADS  Google Scholar 

  44. Huang, D., Huang, P., Wang, T., Li, H., Zhou, Y., Zeng, G.: Continuous-variable quantum key distribution based on a plug-and-play dual-phasemodulated coherent-states protocol. Phys. Rev. A 94(3), 032305 (2016)

    Article  ADS  Google Scholar 

  45. Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J.: A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000)

    Article  ADS  Google Scholar 

  46. Kajiya, S., Ishida, K., Shimizu, K., Kobayashi, Y.: Optical transmission apparatus and bias voltage control method for the optical modulator (2006)

  47. Mcghan, D.L., Harley, J., Sotoodeh, M., Beaulieu, Y.: Modulator bias and optical power control of optical complex e-field modulators. J. Lightwave Technol. 29(15), 2235–2248 (2011)

    Article  ADS  Google Scholar 

  48. Wang, X., Zhang, Y., Yu, S., Guo, H.: High speed error correction for continuous-variable quantum key distribution with multi-edge type ldpc code. Scientific Reports, 8(1) (2018)

  49. Li, D., Huang, P., Zhou, Y., Li, Y., Zeng, G.: Memory-saving implementation of high-speed privacy amplification algorithm for continuous-variable quantum key distribution. IEEE Photonics J. 10(5), 1–12 (2018)

    Google Scholar 

  50. Wang, T., Huang, P., Zhou, Y., Liu, W., Zeng, G.: Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution. Quantum Inf. Process 17(1), 11 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Wang, T., Huang, P., Zhou, Y., Liu, W., Zeng, G.: Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator, vol. 97 (2018)

  52. Li, Y., Huang, P., Wang, S., Wang, T., Li, D., Zeng, G.: A denial-of-service attack on fiber-based continuous-variable quantum key distribution. Physics Letters A (2018)

  53. Zhang, W., Yuan, X., et al.: An auto-bias control scheme for iq-modulator with various modulation formats. In: Optical communication, optical fiber sensors, and optical memories for big data storage, vol. 10158, pp. 1015806. International Society for Optics and Photonics (2016)

  54. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92(6), 062337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  55. Shi, Y., et al.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol. 1, pp. 81–86. IEEE (2001)

  56. Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Multi-party semi-quantum key distribution protocol with four-particle cluster States. Annalen der Physik 1800520 (2019)

  57. Gong, L.-H., Li, J.-F., Zhou, N.-R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National key research and development program (Grant No. 2016YFA0302600), the National Natural Science Foundation of China (Grants No. 61332019, 61671287, 61631014), and the Nature Fund of Science in Shaanxi in 2018(Grant No. 2018JM6123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Huang, P., Wang, T. et al. The Improvement of Performance for Continuous-Variable Quantum Key Distribution with Imperfect Gaussian Modulation. Int J Theor Phys 58, 3414–3435 (2019). https://doi.org/10.1007/s10773-019-04215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04215-3

Keywords

Navigation