Skip to main content
Log in

The Quantum Steganography Protocol via Quantum Noisy Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2015

Abstract

As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennentt, C.H., Bessette, F., Brassard, G., et al.: Experimental quantum cryptography. Cryptology 5, 3–28 (1992)

    Google Scholar 

  2. Lo, H.K., Chau, H.F.: Unconditonal security of quantum key distribution over arbitrary long distance. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Jin, X.M., Ren, J.G., Yang, B., Peng, C.Z., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  4. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process 10, 63–84 (2011)

  5. Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. (2014). doi:10.1007/s10773-014-2245-z

  6. Terhal, B.M, DiVincenzo, D.P, Leung, D.W: Hiding bits in bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)

    Article  ADS  Google Scholar 

  7. Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89, 097905 (2002)

    Article  ADS  Google Scholar 

  8. Guo, G.C., Guo, G.P.: Quantum data hiding with spontaneous parameter down- conversion. Phys. Rev. A. 68, 044303 (2003)

    Article  ADS  Google Scholar 

  9. Hayden, P., Leung, D., Smith, G.: Multiparty data hiding of quantum information. Phys. Rev. A. 71, 062339 (2005)

    Article  ADS  Google Scholar 

  10. Chattopadjyay, I., Sarkar, D.: Local indistinguishability and possibility of hiding cbits in activable bound entanglement states. Phys. Lett. A. 365, 273–277 (2007)

    Article  ADS  Google Scholar 

  11. Fatahi, N., Naseri, M.: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51, 2094–2100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Worley G.G. III: Quantum watermarking by frequency of error when observing qubits in dissimilar bases (2004). arXiv:quant-ph/0401041v2

  13. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing, pp 175–179. IEEE International Conference on Computers, Systems and Signal, New York (1984)

    Google Scholar 

  14. Martin, K.: Steganographic communication with quantum information, pp 32–49. Proceedings of the 9th International Conference on Information Hiding, Heidelberg (2007)

    MATH  Google Scholar 

  15. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782–4786 (2010)

    Article  ADS  Google Scholar 

  16. Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: High-efficiency quantum steganography based on the tensor product of Bell states. Sci. China Phys. Mech. Astron. 56, 1747–1754 (2013)

    ADS  Google Scholar 

  17. Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43, 4531–4536 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bilal, A.S., Todd, A.B.: Quantum steganography with quantum noisy channels. Phys. Rev. A. 83, 022310 (2011)

    Article  Google Scholar 

  19. Mogos, G.: Stego quantum algorithm, International Symposium on Computer Science and its Applications, Hobart Australia, (2008)

  20. Mihara, T.: Quantum steganography embedded any secret text without changing the content of cover data. J. Quantum Inf. Sci. 2, 10–14 (2012)

    Article  Google Scholar 

  21. Zhang, W.W., Gao, F., Liu, B.: A watermarking strategy for quantum images based on quantum fourier transform. Quantum. Inf. Process. 12, 793–804 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermarking strategy for quantum images based on quantum Fourier transform. Quantum. Inf. Process (2013). doi:10.1007/s11128-013-0561-5

  23. Lloyd, S.: Capacity of the noisy quantum channel. Physical. Rev. A. 55, 1613–1622 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  24. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)

    Article  ADS  Google Scholar 

  25. Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: A novel quantum steganography protocol based on probability measurements. Int. J. Quantum Inf. 11, 1350068 (2013)

    Article  Google Scholar 

  26. Yang, C.P., Chun, S., Han, S.Y.: Simiplified of two-qubit quantum phase gate with Our-level systems in cavity QED. Phys. Rev. A. 70, 044303 (2004)

    Article  ADS  Google Scholar 

  27. Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A. 69, 062306 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank editors and reviewers very much for careful work and helpful discussion. The work is supported by NSFC (Grant Nos. 61272514, 61170272, 61121061, 61411146001), NCET (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012) and the Fok Ying Tong Education Foundation (Grant No. 131067). and the Shandong Provincial Natural Science Foundation of China(Grant No. ZR2013FM025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, ZH., Chen, XB., Niu, XX. et al. The Quantum Steganography Protocol via Quantum Noisy Channels. Int J Theor Phys 54, 2505–2515 (2015). https://doi.org/10.1007/s10773-014-2478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2478-x

Keywords

Navigation