Skip to main content
Log in

Quantum Teleportation Under the Effect of Dissipative Environment and Hamiltonian XY Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By supposing that the quantum channel is affected by the Hamiltonian XY model, quantum teleportation is studied in the absence and presence of a dissipative environment. We find that the dynamics of the average of fidelity and entanglement of the channel depend on which qubits interact with the environment and magnitude of parameters of the Hamiltonian. In the case that the qubits of quantum channel interact with environment, a critical value of entanglement is needed to keep quantum advantage at infinite time. We also find that, the most destructive case is that the qubit to be teleported is subject to an environment. It is shown that quantum advantage may be lost even in the absence of an environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge: University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  4. Einstein, A., Podolsky, B., Rozen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  5. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  6. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  7. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  10. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52 (1998)

    Article  ADS  Google Scholar 

  11. Furusawa, A., Søensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  12. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  14. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 396(60), 1888 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  15. Banaszek, K.: Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 62, 024301 (2000)

    Article  ADS  Google Scholar 

  16. Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  17. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  18. Verstraete, F., Verschelde, H.: Fidelity of mixed states of two qubits. Phys. Rev. A 66, 022307 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  19. Badzia, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)

    Article  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11, 1911 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  21. Tang, S.Q., Shan, C.J., Zhang, X.X.: Quantum teleportation of an unknown two-atom entangled state using four-atom cluster state. Int. J. Theor. Phys. 49, 1899 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang, H.L.: Quantum teleportation via a two-qubit Ising Heisenberg chain with an arbitrary magnetic field. Int. J. Theor. Phys. 50, 70 (2011)

    Article  MATH  Google Scholar 

  23. Mohammadi, H., Akhtarshenas, S.J., Kheirandish, F.: Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system. Eur. Phys. J. D 62, 439 (2011)

    Article  ADS  Google Scholar 

  24. Bhaktavatsala Rao, D.D., Panigrahi, P.K., Mitra, C.: Teleportation in the presence of common bath decoherence at the transmitting station. Phys. Rev. A 78, 022336 (2008)

    Article  ADS  Google Scholar 

  25. Hu, X., Gu, Y., Gong, Q.H., Guo, G.C.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)

    Article  ADS  Google Scholar 

  26. Carlo, G.G., Benenti, G., Casati, G.: Teleportation in a noisy environment: a quantum trajectories approach. Phys. Rev. Lett. 91, 257903 (2003)

    Article  ADS  Google Scholar 

  27. Hu, M.L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140 (2011)

    Article  ADS  Google Scholar 

  28. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  29. Pourkarimi, M.R., Rahnama, M.: Decoherence effect on quantum correlation and entanglement in a two-qubit spin chain. arXiv:1211.5907v1 [quant-ph]

  30. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  31. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  32. Lindblad, G.: On the generators of quantum dynamical semigroups. Math. Phys. 48, 119 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Pourkarimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourkarimi, M.R., Rahnama, M. Quantum Teleportation Under the Effect of Dissipative Environment and Hamiltonian XY Model. Int J Theor Phys 53, 1415–1423 (2014). https://doi.org/10.1007/s10773-013-1938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1938-z

Keywords

Navigation