Skip to main content
Log in

Bianchi Type-III Cosmological Models with Anisotropic Dark Energy (DE) in Lyra Geometry

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to explore the solutions of Bianchi type-III cosmological model in Lyra geometry in the background of anisotropic dark energy. The general form of the anisotropy parameter of the expansion for Bianchi type-III space time is obtained in the presence of a single imperfect fluid with a dynamical anisotropic equation of state parameter and a dynamical energy density in Lyra geometry. A special law is assumed for the anisotropy of the fluid with reduces the anisotropy parameter of the expansion to a simple form \(\Delta \propto \frac{1}{H^{2}V^{2}}\). The exact solutions of the field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power law volumetric expansion. The isotropy of the fluid, space and expansion are discussed. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models. The expression for the look-back time, proper distance, luminosity distance and angular diameter distance are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 148, 157 (2003)

    Article  ADS  Google Scholar 

  5. Campanelli, L., et al.: Phys. Rev. Lett. 97, 131302 (2006)

    Article  ADS  Google Scholar 

  6. Campanelli, L., et al.: Phys. Rev. D 76, 063007 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Koivisto, T., Mota, D.F.: Phys. Rev. D 73, 083502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. Koivisto, T., Mota, D.F.: (2007). arXiv:0707.0279 astro-ph

  9. Rodrigues, D.C.: Phys. Rev. D 77, 023534 (2008)

    Article  ADS  Google Scholar 

  10. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  11. Sato, K.: Mon. Not. R. Astron. Soc. 195, 467 (1981)

    ADS  Google Scholar 

  12. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  13. Albrecht, A., Steinhardt, P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  14. Feinstein, A., Ibanez, J.: Class. Quantum Gravity 10, 93 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  15. Aguirregabiria, J.M., et al.: Phys. Rev. D 48, 4662 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ellis, G.F.R.: Cosmological models. In: Bonometto, S., et al. (eds.) Modern Cosmology, pp. 108–158. Institute of Physics Publishing, Bristol and Philadelphia (2002)

    Google Scholar 

  17. Ellis, G.F.R.: Gen. Relativ. Gravit. 38, 1003 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Golovnev, A., et al.: J. Cosmol. Astropart. Phys. 06, 009 (2008)

    Article  ADS  Google Scholar 

  19. Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  20. Carroll, S.M., Hoffman, M.: Phys. Rev. D 68, 023509 (2003)

    Article  ADS  Google Scholar 

  21. Sahni, V.: Lect. Notes Phys. 653, 141 (2004)

    ADS  Google Scholar 

  22. Alam, U., et al.: J. Cosmol. Astropart. Phys. 0406, 008 (2004)

    Article  ADS  Google Scholar 

  23. Lopeland, E.J., et al.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  24. Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 15, 2105 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Turner, M.S., Huterer, D.: J. Phys. Soc. Jpn. 76, 111015 (2007)

    Article  ADS  Google Scholar 

  26. Padmanabhan, T.: Gen. Relativ. Gravit. 40, 529 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Knop, R.K., et al.: Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  28. Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  29. Rahaman, F., Bhui, B., Bhui, B.C.: Astrophys. Space Sci. 301, 47 (2006)

    Article  ADS  Google Scholar 

  30. Usmani, A.A., Ghosh, P.P., Mukhopadhyay, U., Ray, P.C., Ray, S.: Mon. Not. R. Astron. Soc. Lett. 386, L92 (2008)

    Article  ADS  Google Scholar 

  31. Sharif, M., Zubair, M.: Int. J. Mod. Phys. D 19, 1957 (2010)

    Article  ADS  MATH  Google Scholar 

  32. Sharif, M., Zubair, M.: Astrophys. Space Sci. 330, 399 (2010)

    Article  ADS  MATH  Google Scholar 

  33. Akarsu, O., Kilinc, C.B.: Gen. Relativ. Gravit. 42, 763 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Zimdahl, W., et al.: Phys. Rev. D 64, 063501 (2001)

    Article  ADS  Google Scholar 

  35. Armendariz-Picon, C.: J. Cosmol. Astropart. Phys. 07, 007 (2004)

    Article  ADS  Google Scholar 

  36. Kiselev, V.V.: Class. Quantum Gravity 21, 3323 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Novello, M., et al.: Phys. Rev. D 69, 127301 (2004)

    Article  ADS  Google Scholar 

  38. Wei, H., Cai, R.G.: Phys. Rev. D 73, 083002 (2006)

    Article  ADS  Google Scholar 

  39. Tegmark, M., et al.: Astrophys. J. 606, 702 (2004)

    Article  ADS  Google Scholar 

  40. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  41. Astier, P., et al.: Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  42. Mota, D.F., et al.: Mon. Not. R. Astron. Soc. 382, 793 (2007)

    Article  ADS  Google Scholar 

  43. Lyra, G.: Math. Z. 54, 52 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sen, D.K.: Z. Phys. 149, 311 (1957)

    Article  ADS  MATH  Google Scholar 

  45. Dunn, K.A.: J. Math. Phys. 12, 578 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Halford, W.D.: Aust. J. Phys. 23, 863 (1970)

    Article  ADS  Google Scholar 

  47. Soleng, H.H.: Gen. Relativ. Gravit. 19, 1213 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  48. Bharama, K.S.: Aust. J. Phys. 27, 541 (1974)

    Article  ADS  Google Scholar 

  49. Singh, T., Singh, G.P.: J. Math. Phys. 32, 2456 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Rahaman, F.: Int. J. Mod. Phys. D 9, 775 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  51. Rahaman, F.: Nuovo Cimento B 118, 17 (2003)

    ADS  Google Scholar 

  52. Kotambkar, S., Pradhan, A.: Int. J. Mod. Phys. D 12, 853 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  53. Pradhan, A., Aotcmshi, I., Singh, G.P.: Astrophys. Space Sci. 288, 315 (2003)

    Article  ADS  MATH  Google Scholar 

  54. Reddy, D.R.K., Subba Rao, M.V.: Astrophys. Space Sci. 302, 157 (2006)

    Article  ADS  Google Scholar 

  55. Mohanty, G., et al.: Astrophys. Space Sci. 310, 273 (2007)

    Article  ADS  Google Scholar 

  56. Chaubey, R., Shukla, A.K.: Int. J. Theor. Phys. 52, 735 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sahu, S.K., Kumar, T.: Int. J. Theor. Phys. 52, 793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Adhav, K.S., Nimkar, A.S., Ugale, M.R., Dawande, M.V.: Int. J. Theor. Phys. 47, 634 (2008)

    Article  MATH  Google Scholar 

  59. Bali, R., Tinker, S.: Chin. Phys. Lett. 26, 029802 (2009)

    Article  Google Scholar 

  60. Pradhan, A., Amirhashchi, H.: Astrophys. Space Sci. 332, 441 (2011)

    Article  ADS  MATH  Google Scholar 

  61. Moussiaux, A., et al.: J. Phys. A, Math. Gen. 14, 277 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  62. Lorenz-Petzold, D.: Astrophys. Space Sci. 85, 59 (1982)

    Article  ADS  Google Scholar 

  63. Xing-Xiang, W.: Chin. Phys. Lett. 22, 29 (2005)

    Article  ADS  Google Scholar 

  64. Upadhaya, R.D., Dave, S.: Braz. J. Phys. 38, 4 (2008)

    Article  Google Scholar 

  65. Shamir, M.F., Bhatti, A.A.: arXiv:1206.0391v1 [gr-qc] (2 Jun 2012)

  66. Collins, C.B., Hawking, S.W.: Astrophys. J. 180, 317 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  67. Kumar, S., Singh, C.P.: Astrophys. Space Sci. 312, 57 (2007)

    Article  ADS  MATH  Google Scholar 

  68. Singh, C.P., et al.: Astrophys. Space Sci. 315, 181 (2008)

    Article  ADS  Google Scholar 

  69. Singh, J.P., Baghel, P.S.: Int. J. Theor. Phys. 48, 449 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Waga, I.: Astrophys. J. 414, 436 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The author is very much thank full to anonymous referees for their valuable comments which has improved the quality of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Samanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, G.C. Bianchi Type-III Cosmological Models with Anisotropic Dark Energy (DE) in Lyra Geometry. Int J Theor Phys 52, 3442–3456 (2013). https://doi.org/10.1007/s10773-013-1645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1645-9

Keywords

Navigation