Skip to main content
Log in

Anisotropic Dark Energy Models with Hybrid Expansion Law in Lyra’s Manifold

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Field equations of the locally rotationally symmetric (LRS) Bianchi type-I metric with anisotropic fluid are constructed in the framework of Lyra’s manifold. By assuming a hybrid expansion law (HEL) for the average scale factor that yields power-law and exponential-law cosmologies, we model Bianchi type-I space time for the time-dependent displacement field which is proportional to a power-law form of the Hubble parameter. The model provides an elegant description of the transition from cosmic deceleration to acceleration. We discuss the physical behaviors of the derived models with observational constraints applied to late-time acceleration as well as early stages of the Universe. It is observed that HEL Bianchi type I universe is anisotropic at early stage of evolution and becomes isotropic at late times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. S. Lima, Phys. Rev. D 54, 2571 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. A. G. Reiss et al., Astrophys. J. 116, 1009 (1998).

    Google Scholar 

  4. D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).

    Article  ADS  Google Scholar 

  5. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. S. 59, 397 (2009).

    Article  ADS  Google Scholar 

  6. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  7. E. Tortora and M. Demianski, Astron. Astroph. 431, 27 (2005).

    Article  ADS  Google Scholar 

  8. V. F. Cardone et al., Astron. Astroph. 429, 49 (2005).

    Article  ADS  Google Scholar 

  9. P. J. E. Peebles and B. Ratra, Astrophys. J. Lett. 325, 17 (1988).

    Article  ADS  Google Scholar 

  10. B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  11. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).

    ADS  Google Scholar 

  12. Y.-Z. Ma, Nucl. Phys. B 804, 262 (2008).

    Article  ADS  Google Scholar 

  13. J. A. S. Lima et al., MNRAS 312, 747 (2000).

    Article  ADS  Google Scholar 

  14. J. A. S. Lima and J. S. Alcaniz, Astronomy and Astrophysics 348, 1 (1999).

    ADS  Google Scholar 

  15. H. Weyl, Mathem. Z. 2, 384 (1918).

    Article  Google Scholar 

  16. G. Lyra, Mathem. Z. 54, 52 (1951).

    Article  Google Scholar 

  17. D. K. Sen, Z. für Physik A: Hadrons and Nuclei 149, 311 (1957).

    Article  Google Scholar 

  18. D. K. Sen and K. A. Dunn, J. Math. Phys. 12, 578 (1971).

    Article  ADS  Google Scholar 

  19. W. D. Halford, Austr. J. Phys. 23, 863 (1970).

    Article  ADS  Google Scholar 

  20. W. D. Halford, J. Math. Phys. 13, 1699 (1972).

    Article  ADS  Google Scholar 

  21. M. S. Berman and F. Gomide, Gen. Rel. Grav. 20, 191 (1988).

    Article  ADS  Google Scholar 

  22. K. S. Bhamra, Austr. J. Phys. 27, 541 (1974).

    Article  ADS  Google Scholar 

  23. H. Soleng, Gen. Rel. Grav. 19, 1213 (1987).

    Article  ADS  Google Scholar 

  24. F. Rahaman, Astroph. Space Sci. 281, 595 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  25. C. P. Singh, Astroph. Space Sci. 275, 377 (2001).

    Article  ADS  Google Scholar 

  26. N. I. Singh, S. R. Devi, S. S. Singh, and A. S. Devi, Astroph. Space Sci. 321, 233 (2009).

    Article  ADS  Google Scholar 

  27. O. Akarsu, S. Kumar, R. Myrzakulov, M. Sami, and L. Xu, JCAP 01, 022 (2014).

    Article  ADS  Google Scholar 

  28. P. De Bernardis et al., Nature 404, 955 (2000).

    Article  ADS  Google Scholar 

  29. R. Stompor et al., Astroph. J. 561, 7 (2001).

    Article  ADS  Google Scholar 

  30. T. Koivisto and D. F. Mota, Astroph. J. 679, 1 (2008).

    Article  ADS  Google Scholar 

  31. B. Saha, Chin. J. Phys. 43, 1035 (2005).

    Google Scholar 

  32. O. Akarsu and C. B. Kilinic, Gen. Rel. Grav. 42, 763 (2010).

    Article  ADS  Google Scholar 

  33. M. Sharif and M. Zubair, Int. J. Mod. Phys. D 19, 1957 (2010).

    Article  ADS  Google Scholar 

  34. T. Singh and R. Chaubey, Astroph. Space Sci. 321, 5 (2009).

    Article  ADS  Google Scholar 

  35. S. Surendra Singh, Y. Bembem Devi, and M. Saratchandra Singh, Can. J. Phys. 95, 748 (2017).

    Article  ADS  Google Scholar 

  36. S. Kumar and C. P. Singh, Astroph. Space Sci. 312, 57 (2007).

    Article  ADS  Google Scholar 

  37. C. P. Singh et al.: Astrophys. Space Sci. 315, 181 (2008).

    Article  ADS  Google Scholar 

  38. J. P. Singh and P. S. Baghel, Int. J. Theor. Phys. 48, 449 (2009).

    Article  Google Scholar 

  39. M. Visser, Class. Quantum Grav. 21, 2603 (2004).

    Article  ADS  Google Scholar 

  40. V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, JETP Lett. 77, 201 (2003).

    Article  ADS  Google Scholar 

  41. N. Ahmad and A. Pradhan, Int. J. Theor. Phys. 53, 289 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Saratchandra Singh or S. Surendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saratchandra Singh, M., Surendra Singh, S. Anisotropic Dark Energy Models with Hybrid Expansion Law in Lyra’s Manifold. Gravit. Cosmol. 25, 82–89 (2019). https://doi.org/10.1134/S0202289319010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319010110

Navigation