Skip to main content
Log in

Higher Spin Quaternion Waves in the Klein-Gordon Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Electromagnetic interactions are discussed in the context of the Klein-Gordon fermion equation. The Mott scattering amplitude is derived in leading order perturbation theory and the result of the Dirac theory is reproduced except for an overall factor of sixteen. The discrepancy is not resolved as the study points into another direction. The vertex structures involved in the scattering calculations indicate the relevance of a modified Klein-Gordon equation, which takes into account the number of polarization states of the considered quantum field. In this equation the d’Alembertian is acting on quaternion-like plane waves, which can be generalized to representations of arbitrary spin. The method provides the same relation between mass and spin that has been found previously by Majorana, Gelfand, and Yaglom in infinite spin theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silberstein, L.: Philos. Mag. 23(6), 790 (1912)

    Google Scholar 

  2. Lanczos, C.: Z. Phys. 37, 405 (1926)

    Article  ADS  Google Scholar 

  3. Conway, A.W.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 162, 145 (1937)

    Article  ADS  Google Scholar 

  4. Gürsey, F.: Phys. Rev. 77, 844 (1950)

    Article  ADS  MATH  Google Scholar 

  5. Gürsey, F.: Nuovo Cimento 7, 411 (1958)

    Article  MATH  Google Scholar 

  6. Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: J. Math. Phys. 3, 207 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  7. Edmonds, J.D.: Int. J. Theor. Phys. 6, 205 (1972)

    Article  Google Scholar 

  8. Adler, S.L.: Phys. Rev. D 21, 2903 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. Adler, S.L.: Phys. Rev. Lett. 55, 783 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  10. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  11. Horwitz, L.P., Biedenharn, L.C.: Ann. Phys. 157, 432 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Baylis, W.E.: Electrodynamics: a Modern Geometrical Approach. Birkhäuser, Boston (1999)

    Google Scholar 

  13. Gsponer, A., Hurni, J.-P.: ISRI-05-04.26 (2008). arXiv:math-ph/0510059

  14. Gsponer, A., Hurni, J.-P.: ISRI-05-05.26 (2008). arXiv:math-ph/0511092

  15. Demir, S., Tanışlı, M., Candemir, N.: Adv. Appl. Clifford Algebras 20(3), 547 (2010)

    Article  MATH  Google Scholar 

  16. Demir, S., Tanışlı, M.: Eur. Phys. J. Plus 126, 51 (2011)

    Article  Google Scholar 

  17. Panicaud, B.: Int. J. Theor. Phys. 50, 3186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bisht, P.S., Negi, O.P.S.: Int. J. Theor. Phys. 47, 3108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bisht, P.S., Karnatak, G., Negi, O.P.S.: Int. J. Theor. Phys. 49, 1344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Christianto, V., Smarandache, F., Lichtenberg, F.: Prog. Phys. 1, 40 (2009)

    Google Scholar 

  21. Tanışlı, M., Kansu, M.E.: J. Math. Phys. 52, 053511 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  22. Feynman, R.P.: Rev. Mod. Phys. 20, 367 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  23. Feynman, R.P.: Phys. Rev. 84, 108 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Feynman, R.P., Gell-Mann, M.: Phys. Rev. 109, 193 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Kramers, H.A.: Quantentheorie des Electrons und der Strahlung. Akad. Verlagsgesellschaft, Leipzig (1933)

    Google Scholar 

  26. Kramers, H.A.: The Foundations of Quantum Theory. North-Holland, Amsterdam (1957)

    Google Scholar 

  27. Lanczos, C.: Z. Phys. 81, 703 (1933)

    Article  ADS  Google Scholar 

  28. Brown, L.M.: Phys. Rev. 109, 957 (1958)

    Article  ADS  Google Scholar 

  29. Tonin, M.: Nuovo Cimento 14, 1108 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pilkuhn, H.M.: Relativistic Quantum Mechanics. Texts and Monographs in Physics. Springer, Berlin (2003)

    MATH  Google Scholar 

  31. Biedenharn, L.C., Han, M.Y., van Dam, H.: Phys. Rev. D 6, 500 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  32. Volkovyskii, R.Y.: Russ. Phys. J. 14, 611 (1971)

    Google Scholar 

  33. Ángeles, R., Napsuciale, M.: J. Phys. Conf. Ser. 287, 012041 (2011)

    Article  ADS  Google Scholar 

  34. Nottale, L.: In: Alunni, C., Castellana, M., Ria, D., Rossi, A. (eds.) Albert Einstein and Hermann Weyl: 1955–2005. Open Epistemologic Questions—International Colloquium, Lecce, Italy, 2005, p. 141 (2009) (Europa edizioni, Maglie and Editions Rue d’Ulm, Paris, 2009)

    Google Scholar 

  35. Célérier, M.-N., Nottale, L.: Int. J. Mod. Phys. A 25, 4239 (2010)

    Article  ADS  MATH  Google Scholar 

  36. Delgado-Acosta, E.G., Napsuciale, M.: Phys. Rev. D 83, 073001 (2011)

    Article  ADS  Google Scholar 

  37. Ulrych, S.: Phys. Lett. B 625, 313 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Baylis, W.E.: Am. J. Phys. 48, 918 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  39. Sobczyk, G.: Phys. Lett. A 84, 45 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  40. Sachs, M.: General Relativity and Matter. Reidel, Dordrecht (1982)

    MATH  Google Scholar 

  41. Sachs, M.: Quantum Mechanics and Gravity. Springer, Berlin (2010)

    Google Scholar 

  42. Hestenes, D.: Space-Time Algebra. Gordon & Breach, New York (1966)

    MATH  Google Scholar 

  43. Hestenes, D.: From Past to Future: Grassmann’s Work in Context. Grassmann’s Legacy. Springer, Basel (2011)

    Google Scholar 

  44. Sobczyk, G.: New Foundations in Mathematics: the Geometric Concept of Number. San Luis Tehuiloyocan, Mexico (2010)

    Google Scholar 

  45. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  46. Rodrigues, W.A. Jr., Capelas de Oliveira, E.C.: The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach. Lecture Notes in Physics, vol. 722. Springer, New York (2007)

    MATH  Google Scholar 

  47. Girard, P.R.: Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  48. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  49. Baylis, W.E., Cabrera, R., Keselica, J.D.: Adv. Appl. Clifford Algebras 20, 517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tudor, T.: Optik 121, 1226 (2010)

    Article  ADS  Google Scholar 

  51. Dargys, A.: Lith. J. Phys. 51, 53 (2011)

    Article  Google Scholar 

  52. Shervatov, V.G.: Hyperbolic Functions. Heath, Boston (1963)

    Google Scholar 

  53. Yaglom, I.M.: Complex Numbers in Geometry. Academic Press, London (1968)

    Google Scholar 

  54. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, New York (1979)

    MATH  Google Scholar 

  55. Ryan, J.: Complexified Clifford analysis. Complex Var. Theory Appl. 1, 119 (1982)

    Article  MATH  Google Scholar 

  56. Hucks, J.: J. Math. Phys. 34, 5986 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Gal, S.G.: Introduction to Geometric Function Theory of Hypercomplex Variables. Nova Science Publishers, New York (2002)

    Google Scholar 

  58. Yamaleev, R.M.: Aust. J. Math. Anal. Appl. 340, 1046 (2007)

    Article  MathSciNet  Google Scholar 

  59. Yamaleev, R.M.: Adv. Appl. Clifford Algebras 17(2), 281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: with an Introduction to Commutative Hypercomplex Numbers. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  61. Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Zampetti, V.: Geometry of Minkowski Space-Time. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  62. Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  63. Khrennikov, A.: Adv. Appl. Clifford Algebras 20(1), 43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nyman, P.: Adv. Appl. Clifford Algebras 21(4), 799 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  66. Khrennikov, A.: Ubiquitous Quantum Structure: from Psychology to Finance. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  67. Kisil, V.V.: Not. Am. Math. Soc. 54, 1458 (2007)

    MathSciNet  MATH  Google Scholar 

  68. Kisil, V.V.: SIGMA 6, 076 (2010)

    MathSciNet  Google Scholar 

  69. Kisil, V.V.: Int. J. Theor. Phys. 51, 964 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Bracken, P., Hayes, J.: Am. J. Phys. 71, 726 (2003)

    Article  ADS  Google Scholar 

  71. Kravchenko, V.V., Rochon, D., Tremblay, S.: J. Phys. A, Math. Theor. 41, 65205 (2008)

    Article  MathSciNet  Google Scholar 

  72. Kravchenko, V.V.: Applied Pseudoanalytic Function Theory. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  73. Ulrych, S.: J. Math. Phys. 51, 063510 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  74. Griffiths, D.J.: Introduction to Elementary Particles. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  75. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (2006)

    Google Scholar 

  76. Meng, G.: J. Phys. A 36, 9415 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. Adler, S.L.: Quaternionic field theory and a possible dynamics for composite quarks and leptons. In: Proceedings of the Rencontres de Moriond (1986). 11 pp.

    Google Scholar 

  78. Majorana, E.: Nuovo Cimento 9, 335 (1932)

    Article  Google Scholar 

  79. Gelfand, I.M., Yaglom, A.M.: Zh. Èksp. Teor. Fiz. 18, 707 (1948)

    Google Scholar 

  80. Fradkin, D.M.: Am. J. Phys. 34, 314 (1966)

    Article  ADS  Google Scholar 

  81. Casalbuoni, R.: Proceedings of Science. International Conference—Ettore Majorana”s Legacy and the Physics of the XXI Century, University of Catania, Italy (2006)

    Google Scholar 

  82. Bekaert, X., de Traubenberg, M.R., Valenzuela, M.: J. High Energy Phys. 5, 118 (2009)

    Article  ADS  Google Scholar 

  83. Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 155, 447 (1936)

    Article  ADS  Google Scholar 

  84. Fierz, M.: Helv. Phys. Acta 12, 3 (1939)

    Article  Google Scholar 

  85. Fierz, M., Pauli, W.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 173, 211 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  86. Edmonds, J.D.: Found. Phys. 6, 33 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  87. Varlamov, V.V.: Int. J. Theor. Phys. 51, 1453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Evi Bender, Ewald Lehmann, Andrei Khrennikov, and Vladimir V. Kisil for inspiring discussions and continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ulrych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrych, S. Higher Spin Quaternion Waves in the Klein-Gordon Theory. Int J Theor Phys 52, 279–292 (2013). https://doi.org/10.1007/s10773-012-1330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1330-4

Keywords

Navigation