Skip to main content
Log in

FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Inspired by Lifshitz theory for quantum critical phenomena in condensed matter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet. In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations of state on the evolution of various cosmological parameters such as Hubble parameters and scale factor. From the comparison of the general relativity gravity with the HLG with detailed and without with non-detailed balance conditions, remarkable differences are found. Also, a noticeable dependence of singular and non-singular Big Bang on the equations of state is observed. We conclude that HLG explains various epochs in the early universe and might be able to reproduce the entire cosmic history with and without singular Big Bang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlip, S.: Quantum gravity: a progress report. Rept. Prog. Phys. 64, 885 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Abbott, B.P., et al.: LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  3. Gomez, D.S.: Phd-thesis on ”On Friedmann-Lematre-Robertson-Walker cosmologies in non-standard gravity”. Institut de Ciencies de l’Espai (CSIC), Barcelona (2011)

    Google Scholar 

  4. Lifshitz, E.M.: On the Theory of Second-order Phase Transitions. ZH. Eksp. Toer. Fiz. 11, 255 (1941)

    Google Scholar 

  5. Horava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhu, T., F.-W. Shu, Q. Wu., Wang, A.: General covariant Horava-Lifshitz gravity without projectability condition and its applications to cosmology. Phys. Rev. D 85, 044053 (2012)

    Article  ADS  Google Scholar 

  7. Vernieri, D., Sotiriou, T.P.: Horava-Lifshitz Gravity: Detailed balance revisited. Phys. Rev. D 85, 064003 (2012)

    Article  ADS  Google Scholar 

  8. Saravani, M., Afshordi, N., Mann, R.B.: Dynamical Emergence of Universal Horizons during the formation of Black Holes. Phys. Rev. D 89, 084029 (2014)

    Article  ADS  Google Scholar 

  9. Kheyri, F., Khodadi, M., Sepangi, H.R.: Horava-lifshitz cosmology, entropic interpretation and quark-hadron phase transition. Annals Phys. 332, 75 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Loll, R., Pires, L.: Role of the extra coupling in the kinetic term in hořava-lifshitz gravity. Phys. Rev. D 90, 124050 (2014)

    Article  ADS  Google Scholar 

  11. De Felice, A., Tsujikawa, S.: Inflationary gravitational waves in the effective field theory of modified gravity. Phys. Rev. D 91, 103506 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Cruz, M., Gonzalez-Espinoza, M., Saavedra, J., Vargas-Arancibia, D.: Scalar perturbations of two-dimensional Horava-Lifshitz black holes. Eur. Phys. J. C 76, 75 (2016)

    Article  ADS  Google Scholar 

  13. Maciel, A.: Quasilocal approach to general universal horizons. Phys. Rev. D 93, 104013 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chaichian, M., Ghalee, A., Kluson, J.: Restricted f(R) Gravity and Its Cosmological Implications. Phys. Rev. D 93, 104020 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Polchinski, J.: String Theory. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  16. Ambjorn, J., Jurkiewicz, J., Loll, R.: Quantum gravity as sum over spacetimes. Lect. Notes Phys. 807, 59–124 (2010)

    Article  ADS  MATH  Google Scholar 

  17. Litim, D.F.: Fixed points of quantum gravity. Phys. Rev. Lett. 92, 201301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Reuter, M., Saueressig, F.: RenorMalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 65, 065016 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Weinfurtner, S., Sotiriou, T.P., Visser, M.: Projectable Horava-Lifshitz gravity in a nutshell. J. Phys. Conf. Ser. 222, 012054 (2010)

    Article  Google Scholar 

  20. Sotiriou, T.P.: Horava-lifshitz gravity: a status report. J. Phys. Conf. Ser. 283, 012034 (2011)

    Article  Google Scholar 

  21. Visser, M.: Status of Horava gravity: A personal perspective. J. Phys. Conf. Ser. 314, 012002 (2011)

    Article  Google Scholar 

  22. Piresa, L.: Master Thesis on Horava-Lifshitz Gravity Hamiltonian formulation and connections with CDT. Institute of Theoretical Physics at Utrecht University (2012)

  23. Weinberg, S.: Cosmology. Oxford university press, Oxford (2008)

    MATH  Google Scholar 

  24. Tawfik, A.N., Diab, A.M.: Generalized uncertainty principle and recent cosmic inflation observations. Electron. J. Theor. Phys. 12, 9–30 (2015)

    Google Scholar 

  25. Kheyri, F., Khodadi, M., Sepangi, H.R.: Horava-lifshitz early universe phase transition beyond detailed balance. Eur. Phys. J. C 73, 2286 (2013)

    Article  ADS  MATH  Google Scholar 

  26. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chaichian, M., Nojiri, Sh., Odintsov, S.D., Oksanen, M., Tureanu, A.: Class. Quant. Grav. 27, 185021 (2010). Erratum-ibid. Class. Quant. Grav. 29, 159501, (2012)

    Article  ADS  Google Scholar 

  28. Tawfik, A., Diab, A.: Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. D 23, 1430025 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Arnowitt, R., Deser, S., Misner, C.: Dynamical Structure and definition of energy in general relativity. Phys. Rev. 116, 1322–1330 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sotiriou, T.P., Visser, M., Weinfurtner, S.: Phenomenologically viable Lorentz-violating quantum gravity. Phys. Rev. Lett. 102, 251601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sotiriou, T.P., Visser, M., Weinfurtner, S.: Quantum gravity without Lorentz invariance. JHEP 0910, 033 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Giulini, D., Kiefer, C.: Wheeler-dewitt metric and the attractivity of gravity. Phys. Lett. A 193, 21 (1994)

    Article  ADS  Google Scholar 

  35. Mukohyama, S.: Scale-invariant cosmological perturbations from Horava-Lifshitz gravity without inflation. JCAP 0906, 001 (2009)

    Article  ADS  Google Scholar 

  36. Zhu, T., Huang, Y., Wang, A.: inflation in general covariant hořava-lifshitz gravity without projectability. JHEP 1301, 138 (2013)

    Article  ADS  MATH  Google Scholar 

  37. Huang, Y., Wang, A., Wu, Q.: Inflation in general covariant theory of gravity. JCAP 1210, 010 (2012)

    Article  ADS  Google Scholar 

  38. Elizalde, E., Nojiri, S., Odintsov, S. D., Saez-Gomez, D.: Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity. Eur. Phys. J. C 70, 351 (2010)

    Article  ADS  Google Scholar 

  39. Kase, R., Tsujikawa, S.: Effective field theory approach to modified gravity including Horndeski theory and hořava-lifshitz gravity. Int. J. Mod. Phys. D 23, 1443008 (2015)

    Article  ADS  MATH  Google Scholar 

  40. Polyanin, A.D., Zaitsev, V.F.: Exact Solutions for Ordinary Differential Equations. CHAPMAN & HALL/CRC, London (2003)

    MATH  Google Scholar 

  41. Borsanyi, S., Fodor, Z., Hoelbling, Ch., Katz, S.D., Krieg, S., Szabo, K.K.: Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99–104 (2014)

    Article  ADS  Google Scholar 

  42. Tawfik, A.N.: An estimate of the thermodynamic pressure in High-Energy collisions. Int. J. Mod. Phys. A 30, 1550027 (2015)

    Article  ADS  Google Scholar 

  43. Charmousis, Ch., Niz, G., Padilla, A., Saffin, P.M.: Strong coupling in Horava gravity. JHEP 0908, 070 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. Horava, P.: General covariance in gravity at a Lifshitz point. Class. Quant. Grav. 28, 114012 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Verlinde, E.P.: On the origin of gravity and the laws of Newton. JHEP 1104, 029 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Chiang, C.-I., Je-An, G., Chen, P.: Constraining the detailed balance condition in horava gravity with cosmic accelerating expansion. JCAP 1010, 015 (2010)

    Article  ADS  Google Scholar 

  47. Lu, H., Mei, J., Pope, C.N.: SolutionsTo horava gravity. Phys. Rev. Lett. 103, 091301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. Tawfik, A.N., Diab, A.M., El Dahab, E.A.: Friedmann inflation in Horava-Lifshitz gravity with a scalar field. Int. J. Mod. Phys. A 13, 1650042 (2016)

    Article  MATH  Google Scholar 

  49. Ade, P.A.R., et al.: BICEP2/Keck and Planck Collaborations. Phys. Rev. Lett. 114, 101301 (2015)

    Article  ADS  Google Scholar 

  50. Ade, P.A.R., et al.: (Planck Collaboration), Planck 2015 results XX. Constraints on inflation. arXiv:1502.02114, [astro-ph.CO]

  51. Tawfik, A., Diab, A.: Emergence of cosmic space and minimal length in quantum gravity: a large class of spacetimes, equations of state, and minimal length approaches. Indian J. Phys. 90, 1095 (2016)

    Article  ADS  Google Scholar 

  52. Kim, Y.-W., Kim, S. K., Park, Y.-J.: Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity. Eur. Phys. J. C 76, 557 (2016)

    Article  ADS  Google Scholar 

  53. Gangopadhyay, S., Dutta, A.: Constraints on rainbow gravity functions from black hole thermodynamics. Europhys. Lett. 115, 50005 (2016)

    Article  ADS  Google Scholar 

  54. Garattini, R., Saridakis, E.N.: Gravity’s Rainbow: a bridge towards Hořava-Lifshitz gravity. Eur. Phys. J. C 75, 343 (2015)

    Article  ADS  Google Scholar 

  55. Faizal, M., Majumder, B.: Incorporation of generalized uncertainty principle into lifshitz field theories. Annals Phys. 357, 49 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Tawfik, A.N., El Dahab, E.A.: Corrections to entropy and thermodynamics of charged black hole using generalized uncertainty principle. Int. J. Mod. Phys. A 30, 1550030 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Tawfik, A.N., Diab, A.M.: Black hole corrections due to minimal length and modified dispersion relation. Int. J. Mod. Phys. A 30, 1550059 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Robles-Perez, S., Hassouni, Y., Gonzalez-Diaz, P.F.: Coherent states in the quantum multiverse. Phys. Lett. B 683, 1 (2010)

    Article  ADS  Google Scholar 

  59. Gielen, S., Oriti, D., Sindoni, L.: Homogeneous cosmologies as group field theory condensates. JHEP 1406, 013 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Faizal, M.: Multiverse in the third quantized Horava-Lifshits theory of gravity. Mod. Phys. Lett. A 27, 1250007 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tawfik.

Appendices

Appendix A: Einstein Gravity

For EoS p = ω ρ and Friedmann equations with finite cosmological constant, the continuity equation reads

$$\begin{array}{@{}rcl@{}} \dot{a}^{2} = \frac{8\, \pi\, G}{3} \rho_{0}\, a^{-(1+3\, \omega)} + \frac{1}{3}\, {\Lambda}_{\omega}\, a^{2}. \end{array} $$
(72)

Accordingly, we get following solutions

$$\begin{array}{@{}rcl@{}} \text{at}\; \omega=0,\;\;\; t &=& \frac{2 \mathcal{C}_{1} \log\left[2\left( \sqrt{B}\mathcal{C}_{1} + B a^{3/2}\right)\right]}{3\, \sqrt{B}\, \mathcal{C}_{1}} , \end{array} $$
(73)
$$\begin{array}{@{}rcl@{}} \text{at}\; \omega=\frac{1}{3},\;\;\; t &=& \frac{1}{\sqrt{B}} \ln \left[a^{2} - \frac{2A}{B} \right], \end{array} $$
(74)
$$\begin{array}{@{}rcl@{}} \text{at}\; \omega=-\frac{1}{3},\;\;\; a(t) &=& c_{1} \exp\left( \sqrt{B}\, t\right) + c_{2} \exp\left( -\sqrt{B}\, t\right), \end{array} $$
(75)
$$\begin{array}{@{}rcl@{}} \text{at}\; \omega=-1:\;\;\; a(t) &=& c_{3} \exp\left( \sqrt{C}\, t\right) + c_{4} \exp\left( -\sqrt{C}\, t\right), \end{array} $$
(76)
$$\begin{array}{@{}rcl@{}} \text{ and for generalized Chaplugin gas, }\; a(t) &=& c_{5} \exp\left( \sqrt{D}\, t\right) + c_{6} \exp\left( -\sqrt{D}\, t\right), \end{array} $$
(77)

where \(\mathcal {C}_{1}=\sqrt {B\, a^{3} - 2 A}\), A = −4 π G ρ 0/3, B ω /3, and C = −2A + B, \(D=8\, \pi \, G_{N}\, A^{\frac {1}{1+\alpha }}/3\). c 1c 6 are integration arbitrary constants.

Appendix B: QCD Equation of State

From the recent lattice QCD simulations [41], we illustrate in Fig. 3, the pressure in dependence on the energy density. As discussed in Ref. [42], the ultimate goal of the high-energy experiments is first-principle determination of the underlying dynamics in the strongly interacting matter. Determining the thermodynamical quantities, which are well-known tools to describe nature, degrees of freedom, decomposition, size and even the overall dynamics controlling evolution of the medium from which they are originating, is therefore very essential. For the thermodynamical pressure, an approximate attempt utilizing the higher-order moments of the particle multiplicity seems to be promising [42]. On the other hand, determining the thermodynamical energy density and even relating the Bjorken energy density to the lattice energy density depends on lattice QCD at finite baryon chemical potential and first-principle estimation of the formation time of the quark-gluon plasma (QGP). The energy density can be deduced from the derivative of the free energy with respect to inverse temperature. This would explain the need to implement another variable different than the one responsible for the derivatives of the high-order moments.

Fig. 3
figure 3

In units of GeV/fm 3, the pressure is given as function of the energy density (symbols). The curves represent fits for hadron (long-dashed) and parton phase (dashed curves), separately. Both phases are fitted by the dotted curve

In Fig. 3, the lattice QCD results on pressure vs. energy density are fitted as follows.

  • Hadron:

    $$\begin{array}{@{}rcl@{}} p &=& (0.157\pm 0.0007)\, \rho^{1.008\pm 0.07} \approx \frac{1}{6}\, \rho. \end{array} $$
    (78)
  • Parton:

    $$\begin{array}{@{}rcl@{}} p &=& (0.222\pm 0.002)\, \rho^{1.069\pm 0.0024} \approx \frac{1}{5}\, \rho. \end{array} $$
    (79)
  • Hadron-parton:

    $$\begin{array}{@{}rcl@{}} p &=& -0.01757 + (0.2413\pm 0.0007)\, \rho^{1.053\pm 0.008} \approx \frac{1}{4}\, \rho. \end{array} $$
    (80)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A., Abou El Dahab, E. FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State. Int J Theor Phys 56, 2122–2139 (2017). https://doi.org/10.1007/s10773-017-3355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3355-1

Keywords

Navigation