Skip to main content
Log in

Fuzzy Space-Time Geometry and Particle’s Dynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum space-time with Dodson-Zeeman topological structure is studied. In its framework, the states of massive particle m correspond to the elements of fuzzy ordered set (Foset), i.e. the fuzzy points. Due to their partial ordering, m space coordinate x acquires principal uncertainty σ x . Schroedinger formalism of Quantum Mechanics is derived from consideration of m evolution in fuzzy phase space with minimal number of additional axioms. The possible particle’s interactions on fuzzy manifold are studied and shown to be gauge invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayburov, S.: Fuzzy geometry of space-time and quantum dynamics. Proc. Steklov Math. Inst. 245, 154–159 (2004)

    Google Scholar 

  2. Mayburov, S.: Fuzzy geometry of phase space and quantization of massive fields. J. Phys. A 41, 164071–164080 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. Doplicher, S., Fredenhagen, K., Roberts, K.: Quantum structure of space-time at plank scale and quantum fields. Comm. Math. Phys. 172, 187–198 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Isham, C.: In: Ehlers, J., Friedrich, H. (eds.) Canonical Gravity: from Classical to Quantum. Lecture Notes in Phys., vol. 433, pp. 11–28. Springer, Berlin (1994)

    Google Scholar 

  5. Mayburov, S.: Proc. of Quantum Foundations Conference, pp. 232–239. Växjiö Univ. Press, Växjiö (2002)

    Google Scholar 

  6. Bandemer, H., Gottwald, S.: Einführung in Fuzzy-Methoden, pp. 23–45. Akademie Verlag, Berlin (1993)

    MATH  Google Scholar 

  7. Zeeman, C.: Topology of 3-Manifolds, pp. 240–248. Prentice-Hall, New Jersey (1961)

    Google Scholar 

  8. Dodson, C.T.J.: Tangent structures for Hazy space. J. Lond. Math. Soc. 2, 465–474 (1975)

    Article  MathSciNet  Google Scholar 

  9. Madore, J.: Fuzzy sphere. Class. Quantum Gravity 9, 69–83 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Balachandran, A.P., Kurkcuoglu, S., Vaidia, S.: Lectures on Fuzzy and Fuzzy SUSY. hep-th/0511114 (2005)

  11. Jauch, J.M.: Foundations of Quantum Mechanics, pp. 23–55. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  12. Vladimirov, V.S.: Equations of Mathematical Physics, pp. 143–158. Nauka, Moscow (1971)

    Google Scholar 

  13. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals, pp. 21–33. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  14. Schwartz, L.: Mĕthods Mathĕmatiques pour les Sciences Physique, pp. 43–66. Hermann, Paris (1961)

    Google Scholar 

  15. Blokhintsev, D.I.: Space-Time in the Microworld, pp. 47–68. Springer, Berlin (1973)

    Google Scholar 

  16. Cheng, T., Li, L.-F.: Gauge Theory of Elementary Particles, pp. 246–271. Clarendon, Oxford (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Mayburov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayburov, S.N. Fuzzy Space-Time Geometry and Particle’s Dynamics. Int J Theor Phys 49, 3192–3198 (2010). https://doi.org/10.1007/s10773-010-0370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0370-x

Keywords

Navigation