Skip to main content
Log in

Fuzzy topology and geometric quantum formalism

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Dodson-Zeeman fuzzy topology considered as the possible mathematical framework of geometric quantum formalism. In such formalism the states of massive particle m correspond to elements of fuzzy manifold called fuzzy points. Due to their weak (partial) ordering, m space coordinate x acquires principal uncertainty σ x . It’s shown that m evolution with minimal number of additional assumptions obeys to schroedinger and dirac formalisms in norelativistic and relativistic cases correspondingly. It’s argued that particle’s interactions on such fuzzy manifold should be gauge invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, Noncommutative Geometry (Academic Press, N.Y., 1994).

    MATH  Google Scholar 

  2. A. P. Balachandran, S. Kurkcuoglu, and S. Vaidia, Lectures on Fuzzy and Fuzzy SUSY Physics (World Scientific, Singapoure, 2007).

    Book  MATH  Google Scholar 

  3. J. Madore, “Fuzzy sphere,” Class. Quant. Gravity 9, 69–83 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. C. Zeeman, “Topology of brain and visual perception,” in Topology of 3-Manifolds (Prentice-Hall, New Jersey, 1961), pp. 240–248.

    Google Scholar 

  5. C. T. Dodson, “Tangent structures for hazy space,” J. London Math. Soc. 2, 465–474 (1975).

    Article  MathSciNet  Google Scholar 

  6. S. Mayburov, “Fuzzy geometry of phase space and quantization of massive fields,” J. Phys., Ser. A 41, 164071–164080 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Mayburov, “Fuzzy space-time geometry and particle’s dynamics,” Int. J. Theor. Phys. 49, 3192–3198 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Mechanics of Continuous Media (Pergamon Press, Oxford, N.Y., 1976).

    Google Scholar 

  9. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1971).

    Google Scholar 

  10. T. Jordan, “Assumptions that imply quantum mechanics is linearm,” Phys. Rev., Ser. A 73, 022101 (2006).

    Article  ADS  Google Scholar 

  11. J. M. Jauch, “Foundations of Quantum Mechanics (Addison-Wesly, Reading, 1968).

    MATH  Google Scholar 

  12. D. I. Blokhintsev, Space-Time in the Microworld (Springer, Berlin, 1973).

    Book  Google Scholar 

  13. T. Cheng and L. Li, Gauge Theory of Elementary Particles (Claredon, Oxford, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Mayburov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayburov, S.N. Fuzzy topology and geometric quantum formalism. Phys. Part. Nuclei Lett. 11, 1023–1027 (2014). https://doi.org/10.1134/S1547477114070322

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114070322

Keywords

Navigation