Skip to main content
Log in

Embedding Quantum Mechanics Into a Broader Noncontextual Theory: A Conciliatory Result

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The extended semantic realism (ESR) model embodies the mathematical formalism of standard (Hilbert space) quantum mechanics in a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide here an improved version of this model and show that it predicts that, whenever idealized measurements are performed, a modified Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality holds if one takes into account all individual systems that are prepared, standard quantum predictions hold if one considers only the individual systems that are detected, and a standard BCHSH inequality holds at a microscopic (purely theoretical) level. These results admit an intuitive explanation in terms of an unconventional kind of unfair sampling and constitute a first example of the unified perspective that can be attained by adopting the ESR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1991)

    Google Scholar 

  2. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  MATH  ADS  Google Scholar 

  3. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  4. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  5. Busch, P., Shimony, A.: Insolubility of the quantum measurement problem for unsharp observables. Stud. Hist. Philos. Mod. Phys. 27B, 397–404 (1996)

    Article  MathSciNet  Google Scholar 

  6. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  7. Garola, C., Sozzo, S.: A semantic approach to the completeness problem in quantum mechanics. Found. Phys. 34, 1249–1266 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Garola, C.: Objectivity versus nonobjectivity in quantum mechanics. Found. Phys. 30, 1539–1565 (2000)

    Article  MathSciNet  Google Scholar 

  9. Garola, C., Solombrino, L.: The theoretical apparatus of semantic realism: a new language for classical and quantum physics. Found. Phys. 26, 1121–1164 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  10. Garola, C., Solombrino, L.: Semantic realism versus EPR-like paradoxes: the Furry, Bohm-Aharonov, and Bell paradoxes. Found. Phys. 26, 1329–1356 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  11. Garola, C.: Essay review: waves, information, and foundations of physics. Stud. Hist. Philos. Mod. Phys. 33, 101–116 (2002)

    Article  Google Scholar 

  12. Garola, C.: A simple model for an objective interpretation of quantum mechanics. Found. Phys. 32, 1597–1615 (2002)

    Article  MathSciNet  Google Scholar 

  13. Garola, C., Pykacz, J.: Locality and measurements within the SR model for an objective interpretation of quantum mechanics. Found. Phys. 34, 449–475 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Garola, C.: Embedding quantum mechanics into an objective framework. Found. Phys. Lett. 16, 605–612 (2003)

    Article  MathSciNet  Google Scholar 

  15. Garola, C.: MGP versus Kochen-Specker condition in hidden variables theories. Int. J. Theor. Phys. 44, 807–814 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garola, C., Pykacz, J., Sozzo, S.: Quantum machine and semantic realism approach: a unified model. Found. Phys. 36, 862–882 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  18. Garola, C.: The ESR model: reinterpreting quantum probabilities within a realistic and local framework. In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations 4, pp. 247–252. American Institute of Physics, Melville (2007)

    Google Scholar 

  19. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison–Wesley, Reading (1981)

    MATH  Google Scholar 

  20. Ludwig, G.: Foundations of Quantum Mechanics I. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. Aerts, D., Aerts, S.: Towards a general operational and realistic framework for quantum mechanics and relativity theory. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics? Possible Developments in Quantum Theory in the 21st Century. Springer, Berlin (2004)

    Google Scholar 

  22. Khrennikov, A.Y.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  23. Sozzo, S., Garola, C.: A Hilbert space representation of generalized observables and measurement processes in the ESR model. Int. J. Theor. Phys. (submitted). arXiv:0811.0531v2 [quant-ph]

  24. Garola, C., Sozzo, S.: The ESR model: a proposal for a noncontextual and local Hilbert space extension of QM. Europhys. Lett. 86, 20009p1–20009p6 (2009)

    Article  Google Scholar 

  25. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  26. Norsen, T.: Against ‘Realism’. Found. Phys. 37, 311–340 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Sozzo, S.: Modified BCHSH inequalities within the ESR model. In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations 4, pp. 334–338. American Institute of Physics, Melville (2007)

    Google Scholar 

  28. Fine, A.: Hidden variables, joint probability and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  29. Fine, A.: Correlations and efficiency: testing the Bell inequalities. Found. Phys. 19, 453–478 (1989)

    Article  ADS  Google Scholar 

  30. Santos, E.: The failure to perform a loophole-free test of Bell’s inequality supports local realism. Found. Phys. 34, 1643–1673 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Santos, E.: Bell’s theorem and the experiments: increasing empirical support for local realism? Stud. Hist. Philos. Mod. Phys. 36, 544–565 (2005)

    Article  Google Scholar 

  32. De Caro, L., Garuccio, A.: Bell’s inequality, trichotomic observables, and supplementary assumptions. Phys. Rev. A 54, 174–181 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  33. Szabo, L.E.: On Fine’s resolution of the EPR-Bell problem. Found. Phys. 30, 1891–1909 (2000)

    Article  Google Scholar 

  34. Szabo, L.E., Fine, A.: A local hidden variable theory for the GHZ experiment. Phys. Lett. A 295, 229–240 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Gisin, N., Gisin, B.: A local hidden variable model of quantum correlation exploiting the detection loophole. Phys. Lett. A 260, 323–327 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Adenier, G.: Violation of Bell inequalities as a violation of fair sampling in threshold detectors. In: Accardi, L., et al. (eds.) Foundations of Probability and Physics-5, pp. 8–17. American Institute of Physics, Melville (2009)

    Google Scholar 

  37. Adenier, G., Khrennikov, A.Y.: Is the fair sampling assumption supported by the EPR experiments? J. Phys. B 42, 131–141 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garola, C., Sozzo, S. Embedding Quantum Mechanics Into a Broader Noncontextual Theory: A Conciliatory Result. Int J Theor Phys 49, 3101–3117 (2010). https://doi.org/10.1007/s10773-009-0222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-009-0222-8

Navigation