Skip to main content
Log in

Anisotropic Cosmological Models with Variable G and Decaying Vacuum Energy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present Bianchi type-I cosmological models with a perfect fluid source and time-dependent gravitational and cosmological constants based on new exact solutions of Einstein’s equations. The perfect fluid is chosen to obey a barotropic equation of state. The models obtained represent a radiation dominated phase and a dust era. In some of the models the expansion changes from a decelerating phase to an accelerating one and these models asymptotically tend to the de Sitter universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rahman, A.-M.M.: Gen. Relativ. Gravit. 22, 655 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Abdussattar, Vishwakarma, R.G.: Indian J. Phys. B 70(4), 321 (1996)

    ADS  Google Scholar 

  3. Arbab, A.I.: Gen. Relativ. Gravit. 30, 1401 (1998)

    Article  MATH  ADS  Google Scholar 

  4. Arbab, A.I.: Chin. J. Astron. Astrophys. 3, 113 (2003)

    Article  ADS  Google Scholar 

  5. Beesham, A.: Int. J. Theor. Phys. 25, 1295 (1986)

    Article  MATH  Google Scholar 

  6. Beesham, A.: Gen. Relativ. Gravit. 26, 159 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Berman, M.S.: Phys. Rev. D 43, 1075 (1991)

    Article  ADS  Google Scholar 

  8. Borges, H.A., Carneiro, S.: Gen. Relativ. Gravit. 37, 1385 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Canuto, V.M., Narlikar, J.V.: Astrophys. J. 6, 236 (1980)

    Google Scholar 

  10. Chimento, L.P.: Phys. Rev. D 69, 123517 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dicke, R.H.: Nature 192, 440 (1961)

    Article  MATH  ADS  Google Scholar 

  12. Dirac, P.A.M.: Nature 139, 323 (1937)

    Article  ADS  MATH  Google Scholar 

  13. Dirac, P.A.M.: Nature 139, 1001 (1937)

    Article  Google Scholar 

  14. Dirac, P.A.M.: Proc. R. Soc., Lon. 165, 199 (1938)

    Article  MATH  ADS  Google Scholar 

  15. Garnavich, P.M., et al.: Astrophys. J. 493, L53 (1998). astro-ph/9710123

    Article  ADS  Google Scholar 

  16. Garnavich, P.M., et al.: Astrophys. J. 509, 74 (1998). astro-ph/9806396

    Article  ADS  Google Scholar 

  17. Kallingas, D., Wesson, P.S., Everitt, C.W.: Gen. Relativ. Gravit. 24, 3511 (1992)

    Google Scholar 

  18. Kallingas, D., Wesson, P.S., Everitt, C.W.: Gen. Relativ. Gravit. 27, 645 (1995)

    Article  ADS  Google Scholar 

  19. Levit, L.S.: Lett. Nuovo Cimento 29, 23 (1980)

    Article  ADS  Google Scholar 

  20. Lau, Y.K.: Aust. J. Phys. 30, 339 (1985)

    Google Scholar 

  21. Maharaj, S.D., Naidoo, R.: Astrophys. Space Sci. 208, 261 (1993)

    Article  MATH  ADS  Google Scholar 

  22. Massa, C.: Astrophys. Space Sci. 232, 143 (1995)

    Article  ADS  Google Scholar 

  23. Pradhan, A., Yadav, V.K.: Int. J. Mod. Phys. D 11, 893 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Perlmutter, S., et al.: Astrophys. J. 483, 565 (1997). astro-ph/9608192

    Article  ADS  Google Scholar 

  25. Perlmutter, S., et al.: Nature 391, 51 (1998). astro-ph/9712212

    Article  ADS  Google Scholar 

  26. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1997). astro-ph/9608192

    Article  ADS  Google Scholar 

  27. Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998). astro-ph/9805201

    Google Scholar 

  28. Saha, B.: Phys. Rev. D 64, 123501 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. Saha, B.: Mod. Phys. Lett. A 20, 21275 (2005)

    Article  MathSciNet  Google Scholar 

  30. Saha, B.: Astrophys. Space Sci. 302, 83 (2006)

    Article  MATH  ADS  Google Scholar 

  31. Saha, B.: Phys. Rev. D 74, 124030 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Saha, B.: Physica D 219, 1685 (2006)

    Article  MathSciNet  Google Scholar 

  33. Saha, B.: Int. J. Theor. Phys. 45, 983 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schmidt, B.P., et al.: Astrophys. J. 507, 48 (1998). astro-ph/9805200

    Article  ADS  Google Scholar 

  35. Sistero, R.F.: Gen. Relativ. Gravit. 23, 1265 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  36. Vishwakarma, R.G., Abdussattar, Beesham, A.: Phys. Rev. D 60, 063507 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  37. Vishwakarma, R.G.: Gen. Relativ. Gravit. 37, 1305 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Singh.

Additional information

The paper is dedicated to late Prof. S.R. Roy, Ex-Head, Department of Mathematics, Banaras Hindu University, Varanasi, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.P., Prasad, A. & Tiwari, R.K. Anisotropic Cosmological Models with Variable G and Decaying Vacuum Energy. Int J Theor Phys 47, 1559–1570 (2008). https://doi.org/10.1007/s10773-007-9597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9597-6

Keywords

Navigation