Skip to main content
Log in

Physical Propositions and Quantum Languages

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The word proposition is used in physics with different meanings, which must be distinguished to avoid interpretational problems. We construct two languages ℒ*(x) and ℒ(x) with classical set-theoretical semantics which allow us to illustrate those meanings and to show that the non-Boolean lattice of propositions of quantum logic (QL) can be obtained by selecting a subset of p-testable propositions within the Boolean lattice of all propositions associated with sentences of ℒ(x). Yet, the aforesaid semantics is incompatible with the standard interpretation of quantum mechanics (QM) because of known no-go theorems. But if one accepts our criticism of these theorems and the ensuing SR (semantic realism) interpretation of QM, the incompatibility disappears, and the classical and quantum notions of truth can coexist, since they refer to different metalinguistic concepts (truth and verifiability according to QM, respectively). Moreover one can construct a quantum language ℒ TQ (x) whose Lindenbaum–Tarski algebra is isomorphic to QL, the sentences of which state (testable) properties of individual samples of physical systems, while standard QL does not bear this interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein–Podolski–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  2. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  MATH  ADS  Google Scholar 

  3. Beltrametti, E., Cassinelli, G.: The Logic of Quantum Mechanics. Addison–Wesley, Reading (1981)

    MATH  Google Scholar 

  4. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  5. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1991)

    Google Scholar 

  6. Busch, P., Shimony, A.: Insolubility of the quantum measurement problem for unsharp observables. Stud. Hist. Philos. Mod. Phys. B 27, 397–404 (1996)

    Article  MathSciNet  Google Scholar 

  7. Dalla Chiara, M., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  8. Garola, C.: Classical foundations of quantum logic. Int. J. Theor. Phys. 30, 1–52 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garola, C.: Against ‘paradoxes’: a new quantum philosophy for quantum mechanics. In: Aerts, D., Pykacz, J. (eds.) Quantum Physics and the Nature of Reality, pp. 103–140. Kluwer, Dordrecht (1999)

    Google Scholar 

  10. Garola, C.: Objectivity versus nonobjectivity in quantum mechanics. Found. Phys. 30, 1539–1565 (2000)

    Article  MathSciNet  Google Scholar 

  11. Garola, C.: A simple model for an objective interpretation of quantum mechanics. Found. Phys. 32, 1597–1615 (2002)

    Article  MathSciNet  Google Scholar 

  12. Garola, C.: MGP versus Kochen–Specker condition in hidden variables theories. Int. J. Theor. Phys. 44, 807–814 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garola, C., Pykacz, J.: Locality and measurements within the SR model for an objective interpretation of quantum mechanics. Found. Phys. 34, 449–475 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garola, C., Solombrino, L.: The theoretical apparatus of semantic realism: A new language for classical and quantum physics. Found. Phys. 26, 1121–1164 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. Garola, C., Solombrino, L.: Semantic realism versus EPR-like paradoxes: the Furry, Bohm–Aharonov and Bell paradoxes. Found. Phys. 26, 1329–1356 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. Garola, C., Sozzo, S.: A semantic approach to the completeness problem in quantum mechanics. Found. Phys. 34, 1249–1266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Garola, C., Sozzo, S.: On the notion of proposition in classical and quantum mechanics. In: Garola, C., Rossi, A., Sozzo, S. (eds.) The Foundations of Quantum Mechanics. Historical Analysis and Open Questions—Cesena 2004. World Scientific, Singapore (2006)

    Google Scholar 

  18. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  19. Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974)

    Google Scholar 

  20. Jauch, J.M.: Foundations of Quantum Mechanics. Addison–Wesley, Reading (1968)

    MATH  Google Scholar 

  21. Ludwig, G.: Foundations of Quantum Mechanics I. Springer, New York (1983)

    MATH  Google Scholar 

  22. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Piron, C.: Foundations of Quantum Physics. Benjamin, Reading (1976)

    MATH  Google Scholar 

  24. Randall, C.H., Foulis, D.J.: Properties and operational propositions in quantum mechanics. Found. Phys. 13, 843–857 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Garola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garola, C. Physical Propositions and Quantum Languages. Int J Theor Phys 47, 90–103 (2008). https://doi.org/10.1007/s10773-007-9372-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9372-8

Keywords

Navigation