Skip to main content
Log in

Glafka-2004: Categorical Quantum Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A synopsis-cum-update of work in the past half-decade or so on applying the algebraico-categorical concepts, technology and general philosophy of Abstract Differential Geometry (ADG) to various issues in current classical and quantum gravity research is presented. The exposition is mainly discursive, with conceptual, interpretational and philosophical matters emphasized throughout, while their formal technical-mathematical underpinnings have been left to the original papers. The general position is assumed that Quantum Gravity is in need of a new mathematical, novel physical concepts and principles introducing, framework in which old and current problems can be reformulated, readdressed and potentially retackled afresh. It is suggested that ADG can qualify as such a theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Àlvarez, E. (2004). shape Quantum Gravity, pre-print; gr-qc/0405107.

  • Ashtekar, A. (1986). New variables for classical and quantum gravity. Physical Review Letters 57, 2244.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (1995a). Differential geometry on the space of connections via graphs and projective limits. Journal of Geometry and Physics 17, 191.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (1995b). Projective techniques and functional integration. Journal of Mathematical Physics 36, 2170.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (2004). shape Background Independent Quantum Gravity: A Status Report, pre-print gr-qc/0404018.

  • Baez, J. C. (1994a). Generalized measures in gauge theory. Letters in Mathematical Physics 31, 213.

    Article  MathSciNet  Google Scholar 

  • Baez, J. C. (1994b). Diffeomorphism invariant generalized measures on the space of connections modulo gauge transformations. In Yetter, D., ed., shape Proceedings of the Quantum Topology Conference, World Scientific, Singapore, hep-th/9305045.

    Google Scholar 

  • Bergmann, P. G. (1979). Unitary field theory: Geometrization of physics or physicalization of geometry? In shape The 1979 Berlin Einstein Symposium, Lecture Notes in Physics, Springer-Verlag, Berlin-Heidelberg New York.

    Google Scholar 

  • Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987). Space-time as a causal set. Physical Review Letters 59, 521.

    Article  MathSciNet  ADS  Google Scholar 

  • Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity. Foundations of Physics 30, 1707.

    Article  MathSciNet  Google Scholar 

  • Chern, S. S. (1990). What is geometry? American Mathematical Monthly, Special Geometry Issue 97, 678.

    MathSciNet  Google Scholar 

  • Christensen, J. D. and Crane, L. (2004). Causal Sites as Quantum Geometry, pre-print; gr-qc/0410104.

  • Clarke, C. J. S. (1993). The analysis of space-time singularities. Cambridge Lecture Notes in Physics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Connes, A. (1994). shape Noncommutative Geometry, Academic Press, New York.

    Google Scholar 

  • Connes, A. (1998). Noncommutative differential geometry and the structure of spacetime. In Hugget, S. A., Mason, L. A., Tod, K. P., Tsou, S. T., and Woodhouse, N. M. J., eds., shape The Geometric Universe (papers in honour of Roger Penrose), Oxford University Press, Oxford.

    Google Scholar 

  • Crane, L. (1995). Clock and category: Is quantum gravity algebraic? Journal of Mathematical Physics 36, 6180.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dirac, P. A. M. (1931). Quantized singularities in the electromagnetic field, Proceedings of the Royal Society London A 133, 60.

    MATH  ADS  Google Scholar 

  • Einstein, A. (1949). Albert Einstein: Philosopher-scientist. In Schilpp, P. A., ed., The Library of Living Philosophers, Vol. 7, Evanston, III.

  • Einstein, A. (1950). shape Out of My Later Years, Philosophical Library, New York.

    Google Scholar 

  • Einstein, A. (1956). shape The Meaning of Relativity, 5th edn., Princeton University Press, Princeton.

    Google Scholar 

  • Einstein, A. (1990). A 1916 quotation taken from shape The Mathematical Intelligencer 12(2), 31.

  • Eddington, A. S. (1920). shape Report on the Relativity Theory of Gravitation, Fleetway Press, London.

    Google Scholar 

  • Faddeev, L. D. (2000). Modern mathematical physics: What it should be. In Fokas, A., Grigoryan, A., Kibble, T., and Zegarlinski, B., eds., shape Mathematical Physics 2000, Imperial College Press, London.

    Google Scholar 

  • Feynman, R. P. (1992). shape The Character of Physical Law, Penguin Books, London.

    Google Scholar 

  • Feynman, R. P. (1999). Feynman Lectures on Gravitation, notes by Morinigo, F. B., Wagner, W. G., and Hatfield, B., eds., Penguin Books, London.

    Google Scholar 

  • Geroch, R. (1968). What is a singularity in General Relativity? Annals of Physics 48, 526.

    Article  MATH  ADS  Google Scholar 

  • Grinkevich, E. B. (1996). Synthetic Differential Geometry: A Way to Intuitionistic Models of General Relativity in Toposes, pre-print, gr-qc/9608013.

  • Guts, A. K. (1991). A topos-theoretic approach to the foundations of relativity theory. Soviet Mathematics (Doklady) 43, 904.

    MATH  MathSciNet  Google Scholar 

  • Guts, A. K. (1995a). Axiomatic causal theory of space-time. Gravitation and Cosmology 1.

  • Guts, A. K. (1995b). Causality in micro-linear theory of space-time. In shape Groups in Algebra and Analysis, Conference in Omsk State University, Omsk Publications, 33.

  • Guts, A. K. and Demidov, V. V. (1993). shape Space-time as a Grothendieck topos, Abstracts of the 8th Russian Conference on Gravitation, Moscow, p. 40.

  • Guts, A. K. and Grinkevich, E. B. (1996). shape Toposes in General Theory of Relativity, pre-print, gr-qc/9610073.

  • Heisenberg, W. (1989). shape Encounters with Einstein, and Other Essays on People, Places and Particles, Princeton University Press, Princeton.

    Google Scholar 

  • Husain, V. and Winkler, O. (2004). shape Quantum resolution of black hole singularities, pre-print, gr-qc/0410125.

  • Isham, C. J. (1991). Canonical groups and the quantization of geometry and topology. In Ashtekar, A. and Stachel, J., eds., shape Conceptual Problems of Quantum Gravity, Birkhäuser, Basel.

  • Isham, C. J. (1993). Canonical quantum gravity and the problem of time. In shape Integrable Systems, Quantum Groups, and Quantum Field Theories, Kluwer Academic Publishers, London-Amsterdam; gr-qc/9210011.

    Google Scholar 

  • Isham, C. J. (2003a). Some reflections on the status of conventional quantum theory when applied to quantum gravity. In Gibbons, G. W., Shellard, E. P. S., and Rankin, S. J., eds., shape The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th Birthday, Cambridge University Press, Cambridge, quant-ph/0206090.

    Google Scholar 

  • Isham, C. J. (2003b). A new approach to quantising space-time: I. Quantising on a general category. Advances in Theoretical and Mathematical Physics 7, 331, gr-qc/0303060.

    MathSciNet  Google Scholar 

  • Isham, C. J. (2004a). A new approach to quantising space-time: II. Quantising on a category of sets. Advances in Theoretical and Mathematical Physics 7, 807, gr-qc/0304077.

    MathSciNet  Google Scholar 

  • Isham, C. J. (2004b). A new approach to quantising space-time: III. State vectors as functions on arrows. Advances in Theoretical and Mathematical Physics 8, 797, gr-qc/0306064.

    MathSciNet  Google Scholar 

  • Isham, C. J. (2005). Quantising on a category, to appear in shape A Festschrift for James Cushing, quant-ph/0401175.

  • Ivanenko, D. and Sardanashvily, G. (1983). The gauge treatment of gravity. Physics Reports 94, 1.

    Article  MathSciNet  ADS  Google Scholar 

  • Jackiw, R. (2000). What good are quantum field theory infinities?. In Fokas, A., Grigoryan, A, Kibble, T., and Zegarlinski, B., eds., shape Mathematical Physics 2000, Proceedings of the International Congress on Mathematical Physics held at Imperial College, Imperial College Press, London.

    Google Scholar 

  • Kastler, D. (1986). Introduction to alain connes' non-commutative differential geometry. In Jadczyk, A., ed., shape Fields and Geometry 1986: Proceedings of the XXIInd Winter School and Workshop of Theoretical Physics, Karpacz, Poland, World Scientific, Singapore.

    Google Scholar 

  • Kock, A. (1981). shape Synthetic Differential Geometry, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kock, A. and Reyes, G. E. (1979). Connections in formal differential geometry. In shape Topos Theoretic Methods in Geometry, Aarhus Mathematical Institute Various Publications Series, Vol. 30, 158.

    MATH  MathSciNet  Google Scholar 

  • Kriele, M. (1999). Shape Spacetime: Foundations of General Relativity and Differential Geometry, LNP m59, Springer-Verlag, Berlin-Heidelberg New York.

    Google Scholar 

  • Lavendhomme, R. (1996). shape Basic Concepts of Synthetic Differential Geometry, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • MacLane, S. and Moerdijk, I. (1992). shape Sheaves in Geometry and Logic: A First Introduction to Topos Theory, Springer-Verlag, Berlin-Heidelberg New York.

    Google Scholar 

  • Mallios, A. (1988). On the existence of mathcalA-connections. Abstracts of the American Mathematical Society 9, 509.

    Google Scholar 

  • Mallios, A. (1998a). shape Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, Vols. 1-2, Kluwer Academic Publishers, Dordrecht. As noted in connection with (Q2.?), there is also a Russian translation of this 2-volume book by MIR Publishers, Moscow (vol. 1, 2000 and vol. 2, 2001).

    Google Scholar 

  • Mallios, A. (1998b). On an axiomatic treatment of differential geometry via vector sheaves, applications. Mathematica Japonica (International Plaza) 48, 93 (invited paper).

    MathSciNet  Google Scholar 

  • Mallios, A. (1999). On an axiomatic approach to geometric prequantization: A classification scheme á la Kostant-Souriau-Kirillov. Journal of Mathematical Sciences (New York) 95, 2648 (invited paper).

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. (2001). Abstract differential geometry, general relativity and singularities. In Abe, J. M. and Tanaka, S., eds., shape Unsolved Problems in Mathematics for the 21st Century: A Tribute to Kiyoshi Isøki's 80th Birthday, 77, IOS Press, Amsterdam (invited paper).

    Google Scholar 

  • Mallios, A. (2002). Abstract differential geometry, singularities and physical applications. In Strantzalos, P., and Fragoulopoulou, M., eds., shape Topological Algebras with Applications to Differential Geometry and Mathematical Physics, shape Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios (16–18/9/1999), Department of Mathematics, University of Athens Publications.

  • Mallios, A. (2003). Remarks on “singularities”, to appear/footnoteIn a significantly modified and expanded version of the e-arXiv posted paper. in the volume shape Progress in Mathematical Physics, Columbus, F., ed., Nova Science Publishers, Hauppauge, New York (invited paper), gr-qc/0202028.

    Google Scholar 

  • Mallios, A. (2004). K-Theory of topological algebras and second quantization. Acta Universitatis Ouluensis—Scientiae Rezum Naturalium A408, 145, math-ph/0207035.

    MathSciNet  Google Scholar 

  • Mallios, A. (2005a). Quantum gravity and “singularities”, shape Note di Matematica, in press (invited paper), physics/0405111.

  • Mallios, A. (2005b). shape Geometry and physics of today (see this volume), physics/0405112.

  • Mallios, A. (2005c). Modern differential geometry in gauge theories, 2-volume continuation of citemall1: vol. 1 shape Maxwell Fields, vol. 2 shape Yang-Mills Fields (forthcoming by Birkhäuser, Basel-New York).

    MATH  Google Scholar 

  • Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality. International Journal of Theoretical Physics 40, 1885, gr-qc/0102097.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Raptis, I. (2002). Finitary čech-de rham cohomology: Much ado without smooth-smoothness. International Journal of Theoretical Physics 41, 1857, gr-qc/0110033.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Raptis, I. (2003). Finitary, causal and quantal vacuum einstein gravity. International Journal of Theoretical Physics 42, 1479, gr-qc/0209048.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Raptis, I. (2005). smooth-smooth singularities exposed: Chimeras of the differential spacetime manifold, ‘paper-book’/research monograph (in preparation), gr-qc/0411121.

  • Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions and de rham cohomology. Acta Applicandae Mathematicae 55, 231.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de rham cohomology. Acta Applicandae Mathematicae 67, 59.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2002). Dense singularities and de rham cohomology. In shape Topological Algebras with Applications to Differential Geometry and Mathematical Physics, in shape Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios (16–18/9/1999), Strantzalos, P. and Fragoulopoulou, M., eds., Department of Mathematics, University of Athens Publications.

  • Modesto, L. (2004). shape Disappearance of the Black Hole Singularity in Quantum Gravity, pre-print, gr-qc/0407097.

  • Pauli, W. (1994). Albert einstein and the development of physics. In shape Wolfgang Pauli: Writings on Physics and Philosophy, translated by Schlapp, R., Enz, C. P., and von Meyenn, K., eds., Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Penrose, R. (2003). The problem of spacetime singularities: Implications for quantum gravity?. In Gibbons, G. W., Shellard, E. P. S., and Rankin, S. J., eds., shape The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th Birthday, Cambridge University Press, Cambridge.

    Google Scholar 

  • Raptis, I. (1996). shape Axiomatic Quantum Timespace Structure: A Preamble to the Quantum Topos Conception of the Vacuum, Ph.D. Thesis, Physics Department, University of Newcastle upon Tyne, UK.

  • Raptis, I. (2001). Presheaves, sheaves and their topoi in quantum gravity and quantum logic, paper version of a talk titled “shape Reflections on a Possible ‘Quantum Topos’ Structure Where Curved Quantum Causality Meets ‘Warped’ Quantum Logic” given at the 5th biannual shape International Quantum Structures Association Conference in Cesena, Italy (March–April 2001), pre-print, gr-qc/0110064.

  • Raptis, I. (2003). Quantum space-time as a quantum causal set, to appear\footnoteIn a significantly modified and expanded version of the e-arXiv posted paper. in the volume shape Progress in Mathematical Physics, Columbus, F., ed., Nova Science Publishers, Hauppauge, New York (invited paper), gr-qc/0201004.

    Google Scholar 

  • Raptis, I. (2005a). Finitary-algebraic ‘resolution’ of the inner schwarzschild singularity. International Journal of Theoretical Physics 44(11), gr-qc/0408045.

  • Raptis, I. (2005b). Finitary topos for locally finite, causal and quantal vacuum einstein gravity. Submitted to the International Journal of Theoretical Physics, gr-qc/0507100.

  • Schopenhauer, A. (1970). shape Essays and Aphorisms, Penguin Press, London.

    Google Scholar 

  • Selesnick, S. A. (1983). Second quantization, projective modules, and local gauge invariance. International Journal of Theoretical Physics 22, 29.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Smolin, L. (2004). shape An Invitation to Loop Quantum Gravity, pre-print, gr-qc/0408048.

  • Sorkin, R. D. (1995). A specimen of theory construction from quantum gravity. In Leplin, J., ed., shape The Creation of Ideas in Physics, Kluwer Academic Publishers, Dordrecht, gr-qc/9511063.

    Google Scholar 

  • Sorkin, R. D. (1997). Forks in the road, on the way to quantum gravity. International Journal of Theoretical Physics 36, 2759, gr-qc/9706002.

    Article  MATH  MathSciNet  Google Scholar 

  • Sorkin, R. D. (2003). shape Causal Sets: Discrete Gravity, pre-print, gr-qc/0309009.

  • Stachel, J. J. (1987). How Einstein discovered general relativity: A historical tale with some contemporary morals. In MacCallum, M. A. H., ed., shape Proceedings of the 11th International Conference on General Relativity and Gravitation, Cambridge University Press, Cambridge.

    Google Scholar 

  • Stachel, J. J. (1989). Einstein's search for general covariance. In Howard, D. and Stachel, J. J., eds., shape Einstein and the History of General Relativity, Einstein Studies Vol. 1, Birkhäuser, Boston-Basel-Berlin.

    Google Scholar 

  • Stachel, J. (1991). Einstein and quantum mechanics. In Ashtekar, A. and Stachel, J., eds., shape Conceptual Problems of Quantum Gravity, Birkhäuser, Boston-Basel-Berlin.

    Google Scholar 

  • Stachel, J. J. (1993a). The other Einstein: Einstein contra field theory. In Beller, M., Cohen, R. S., and Renn, J., eds., shape Einstein in Context, Cambridge University Press, Cambridge.

    Google Scholar 

  • Stachel, J. J. (1993b). The meaning of general covariance: The hole story. In Earman, J. et al., eds., shape Philosophical Problems of the Internal and External World, University of Pittsburg Press.

  • Stachel, J. J. (2002). “The relations between things” versus “The things between relations”: The deeper meaning of the hole argument. In Malament, D. B., ed., shape Reading Natural Philosophy/Essays in the History and Philosophy of Science and Mathematics, Open Court, Chicago and LaSalle, Illinois.

    Google Scholar 

  • Stevens, W. (1990). shape Adagia (included in Opus Posthumous), Vintage Books.

  • Strominger, A. (1991). Baby universes. In Coleman, S., Hartle, J. B., Piran, T., and Weinberg, S., eds., shape Quantum Cosmology and Baby Universes, Proceedings of the Jerusalem Winter School for Theoretical Physics, World Scientific, Singapore-London-Hong Kong.

    Google Scholar 

  • Taubes, C. H. (1984). Morse theory and monopoles; topology in long range forces. In shape Progress in Gauge Field Theory: Cargèse Lectures 1983, NATO Advanced Science Institute, Series B, Physics 115, Plenum Press, New York-London.

    Google Scholar 

  • 't Hooft, G. (2001). shape Obstacles on the Way Towards the Quantization of Space, Time and Matter, ITP-University of Utrecht, pre-print SPIN-2000/20.

  • Torre, C. G. (1993). Gravitational observables and local symmetries. Physical Review D48, 2373.

    MathSciNet  ADS  Google Scholar 

  • Torre, C. G. (1994). shape The problem of time and observables: Some recent mathematical results, pre-print, gr-qc/9404029.

  • Vassiliou, E. (1994). On Mallios' aconn-connections as connections on principal sheaves. Note di Matematica 14, 237.

    MATH  MathSciNet  Google Scholar 

  • Wittgenstein, L. (1956). shape Remarks on the Foundations of Mathematics, von Wright, G. H., Rhees, R., and Anscombe, G. E. M., eds., MIT Press, Cambridge Massachussetts.

    Google Scholar 

  • Wittgenstein, L. (1980). shape Culture and Value, von Wright, G. H., ed. (in collaboration with Heikki Nyman), translated by Winch, P., Blackwell Publishers, Oxford.

    Google Scholar 

  • Weinstein, S. (1998). shape Gravity and Gauge Theory, pre-print. This pre-print can be retrieved from http://philsci-archive.pitt.edu/archive/00000834/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Raptis.

Additional information

Paper version of a talk given at the Glafka–2004: Iconoclastic Approaches to Quantum Gravity international theoretical physics conference, held in Athens, Greece (summer 2004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raptis, I. Glafka-2004: Categorical Quantum Gravity. Int J Theor Phys 45, 1495–1523 (2006). https://doi.org/10.1007/s10773-006-9137-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9137-9

Key Words

Navigation