Skip to main content
Log in

Forks in the road, on the way to quantum gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In seeking to arrive at a theory of “quantum gravity,” one faces several choices among alternative approaches. I list some of these “forks in the road” and offer reasons for taking one alternative over the other. In particular, I advocate the following: the sum-over-histories framework for quantum dynamics over the “observable and state-vector” framework; relative probabilities over absolute ones; spacetime over space as the gravitational “substance” (4 over 3+1); a Lorentzian metric over a Riemannian (“Euclidean”) one; a dynamical topology over an absolute one; degenerate metrics over closed timelike curves to mediate topology change; “unimodular gravity” over the unrestricted functional integral; and taking a discrete underlying structure (the causal set) rather than the differentiable manifold as the basis of the theory. In connection with these choices, I also mention some results from unimodular quantum cosmology, sketch an account of the origin of black hole entropy, summarize an argument that the quantum mechanical measurement scheme breaks down for quantum field theory, and offer a reason why the cosmological constant of the present epoch might have a magnitude of around 10−120 in natural units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambjorn, J., Jurkiewicz, J. and Watabiki, (1995). Dynamical triangulations, a gateway to quantum gravity?Journal of Mathematical Physics,36, 6299–6339〉e-print archive: hepth/9503108〈.

    Article  MathSciNet  ADS  Google Scholar 

  • Anderson, A., and DeWitt, B. S. (1986). Does the topology of space fluctuate?Foundations of Physics,16, 91–105.

    Article  MathSciNet  ADS  Google Scholar 

  • Aneziris, C., Balachandran, A. P., Bourdeau, M., Jo, S., Ramadas, T. R., and Sorkin, R. D. (1989). Aspects of spin and statistics in generally covariant theories.International Journal of Modern Physics A,4, 5459–5510.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. (1991).Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore.

    MATH  Google Scholar 

  • Bekenstein, J. D. (1975). Statistical black hole thermodynamics,Physical Review D,12, 3077–3085.

    Article  MathSciNet  ADS  Google Scholar 

  • Bell, J. S. (1987).Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Cambridge University Press, Cambridge.

    Google Scholar 

  • Blumenthal, L. M., and Menger, K. (1970).Studies in Geometry, Freeman, San Francisco, Part 3: Metric Geometry.

    MATH  Google Scholar 

  • Bohm, D. (1952).Physical Review D,85, 166, 180.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bombelli, L., Koul, R. K., Lee, J., and Sorkin, R. D. (1986). A quantum source of energy for black holes,Physical Review D,34, 373–383.

    Article  MathSciNet  ADS  Google Scholar 

  • Borde, A., and Sorkin, R. D. (n.d.). Causal cobordism: Topology change without causal anomalies, in preparation.

  • Catterall S. (n.d.). Lalttice quantum gravity: Review and recent developments, Talk at international workshop LATTICE 95, July 1995, Melbourne Australia;Nuclear Physics B (Proceedings Supplement), in press〉e-print archive: hep-lat/9510008〈.

  • Daughton, A., Louko, J., and Sorkin, R. D. (1994). Initial conditions and unitarity in unimodular quantum cosmology, inProceedings of the Fifth Canadian Conference on General Relativity and Relativistic Astrophysics, R. B. Mann and R. G. McLenaghan, eds., World Scientific, Singapore, pp. 181–185,〉e-print archive: gr-qc/9305016〈.

    Google Scholar 

  • David, F. (1992). Simplical quantum gravity and random lattices, Lectures given at Les Houches, Session LVII, July 5–August 1, 1992: Gravitation and quantizations.

  • Deser, S., and Steif, A. R. (1993). No time machines from lightlike sources in 2+1 gravity, inDirections in General Relativity, Bei-Lok Hu, and T. A. Jacobson, eds., Cambridge University Press, Cambridge, Vol. 1, p. 78.

    Google Scholar 

  • DeWitt, B. (1967). Quantum theory of gravity II: The manifestly covariant theory,Physical Review 162, 1195–1239.

    Article  MATH  ADS  Google Scholar 

  • Dirac, P. A. M. (1958). The theory of gravitation in Hamiltonian form,Proceedings of the Royal Society of London A,246, 333–343.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dowker, F., and Kent, A. (1996). On the consistent histories approach to quantum mechanics,Journal of Statistical Physics,82, 1575–1646〉e-print archive: gr-qc/9412067〈.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dowker, H. F., and Sorkin, R. D. (n.d.). A spin-statistics theorem for certain topological geons, submitted〉e-print archive:gr-qc/9609064〈.

  • Einstein, A. (1986). Letter to H. S. Joachim. August 14 1954, Item 13-453, cited in J. Stachel, Einstein and the quantum: Fifty years of struggle, inFrom Quarks to Quasars, Philosophical Problems of Modern Physics, R. G. Colodny, ed., University of Pittsburgh Press, pp. 380–381.

  • Feynman, R. P. (1948). Spacetime approach to non-relativistic quantum mechanics,Reviews of Modern Physics,20, 367–387.

    Article  MathSciNet  ADS  Google Scholar 

  • Feynman, R. P., Leighton, R. B., and Sands, M. (1965).The Feynman Lectures on Physics, Vol. III: Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Finkelstein, D. (1987). Finite physics, inThe Universal Turing Machine—A Half-Century Survey, R. Herken, ed., Kammerer & Unverzagt, Hamburg.

    Google Scholar 

  • Finkelstein, D. (1988). “Superconducting” causal nets,International Journal of Theoretical Physics,27, 473.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Finkelstein, D. R. (1996).Quantum Relativity, Springer, New York.

    MATH  Google Scholar 

  • Friedman, J. L., Papastamatiou, N. J., and Simon, J. Z. (1992). Failure of unitarity for interacting fields on spacetimes with closed timelike curves,Physical Review D,46, 4456.

    Article  MathSciNet  ADS  Google Scholar 

  • Geroch, R. (1967). Topology in general relativity,Journal of Mathematical Physics,8, 782–786.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Geroch, R. (1972). Einstein algebras,Communications in Mathematical Physics,26, 271–275 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  • Green, M. B., Schwarz, J. H., and Witten, E. (1987).Superstring Theory, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Halliwell, J. J., and Hartle, J. B. (1990). Integration contours for the no-boundary wave function of the universe,Physical Review D,41, 1815.

    Article  MathSciNet  ADS  Google Scholar 

  • Hartle, J. B. (1995). Spacetime quantum mechanics and the quantum mechanics of spacetime, in B. Julia and J. Zinn-Justin, eds.,Gravitation and Quantizations, Les Houches, Session LVII, 1992, Elsevier Science B. V., Amsterdam.

    Google Scholar 

  • Hawking, S. W. (1978). Space-time foam,Nuclear Physics B, 144, 349–362.

    Article  MathSciNet  Google Scholar 

  • Hawking, S. W. (1979). The path-integral approach to quantum gravity, in Hawking, and W. Israel, eds., S. W.General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, pp. 746–789.

    Google Scholar 

  • Heisenberg, W. (1930).The Physical Principles of the Quantum Theory, Dover, New York.

    MATH  Google Scholar 

  • Horowitz, G. T. (1991). Topology change in classical and quantum gravity.Classical and Quantum Gravity,8, 587–601.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Isham, C. J. (1990). An introduction to general topology and quantum topology, inPhysics, Geometry and Topology, H. C. Lee, ed., Plenum Press, New York, pp. 129–190.

    Google Scholar 

  • Isham, C. J. (1992). Conceptual and geometrical problems in canonical quantum gravity, inRecent Aspects of Quantum Fields, H. Mitter and H. Gausterer, eds., Springer, Berlin.

    Google Scholar 

  • Isham, C. J. (1993). Canonical quantum gravity and the problem of time, inIntegrable Systems, Quantum Groups, and Quantum Field Theories, L. A. Ibort and M. A. Rodriguez, eds., Kluwer, London, pp. 157–288 〈e-print archive: gr-gc/9210011〉.

    Google Scholar 

  • Isham, C. J., Kubyshin, Y., and Renteln, P. (1990). Quantum norm theory and the quantization of metric topology,Classical and Quantum Gravity,7, 1053.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kalmykov, M. Yu. (1995). Gauge and parametrization dependencies of the one-loop counterterms in Einstein gravity,Classical and Quantum Gravity 12, 1401–1412 〈e-print archive:hep-th/9502152〉.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Krauss, L. M., and Turner, M. S. (n.d.). The cosmological constant is back 〈e-print archive: astro-ph/9504003〉.

  • Kuchař, K. V. (1992). Time and interpretations of quantum gravity, inProceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, G. Kunstatter, D. Vincent, and J. Williams, eds., World Scientific, Singapore.

    Google Scholar 

  • Kuchař, K. V. (1993). Canonical quantum gravity, in“General Relativity and Gravitation 1992”: Proceedings of the Thirteenth Conference on General Relativity and Gravitation, R. J. Gleiser, C. N. Kozameh, and O. M. Moreschi, eds., IOP Publishing, Bristol.

    Google Scholar 

  • Louko, J., and Sorkin, R. D. (1997). Complex actions in two-dimensional topology change,Classical and Quantum Gravity,14, 179–203 〈e-print archive: gr-qc/9511023〉.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Mandelstam, S. (1968). Feynman rules for the gravitational field from the coordinate-independent field theoretic formalism,Physical Review,175, 1604.

    Article  ADS  Google Scholar 

  • Minkowski, H. (1923). Space and time, inThe Principle of Relativity, W. Perrett and G. B. Jeffrey transl., Methuen, London.

    Google Scholar 

  • Nakanishi, N., and Ojima, I. (1990).Covariant Operator Formalism of Gauge Theories and Quantum Gravity, World Scientific, Singapore.

    Google Scholar 

  • Page, D. N. (1991). Interpreting the density matrix of the universe, inConceptual Problems of Quantum Gravity, A. Ashtekar and J. Stachel, eds., Birkhäser, Boston, pp. 116–121.

    Google Scholar 

  • Pauli, W. (1958).Theory of Relativity, Pergamon, Oxford, Supplementary Note 19, pp. 219–220.

    MATH  Google Scholar 

  • Penrose, R. (1993). Gravity and quantum mechanics, inGeneral Relativity and Gravitation 1992, IOP Publishing, Bristol, pp. 179–189.

    Google Scholar 

  • Polyakov, A. M. (1990). Two-dimensional quantum gravity. Superconductivity at highT c , inFields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds, North-Holland, Amsterdam, pp. 305–368.

    Google Scholar 

  • Reichenbach, H. (1969).Axiomatization of the Theory of Relativity, University of California Press, Berkeley.

    Google Scholar 

  • Riemann, G. F. B. (1919).Über die Hypothesen, welche der Geometrie zugrunde liegen, H. Weyl, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Robb, A. A. (1936).Geometry of Time and Space, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rovelli, C., and Smolin, L. (1990). Loop representation for quantum general relativity,Nuclear Physics B,B133, 80.

    Article  MathSciNet  ADS  Google Scholar 

  • Sakharov, A. D. (1984). Cosmological transitions with changes in the signature of the metric,JETP 60, 214.

    Google Scholar 

  • Samuel, J. (1993). Fractional spin from gravity,Physical Review Letters 71, 215.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sen, A. (1982) Gravity as a spin system,Physics Letters 119B, 89–91.

    ADS  Google Scholar 

  • Shankar, R. (1980).Principles of Quantum Mechanics, Plenum Press, New York, Chapter 4.

    Google Scholar 

  • Sinha, S., and Sorkin, R. D. (1991). A sum-over-histories account of an EPR(B) experiment,Foundations of Physics Letters 4, 303–335.

    Article  MathSciNet  ADS  Google Scholar 

  • Sorkin, R. D. (1979). On the failure of the time-energy uncertainty principle,Foundations of Physics,9, 123–128.

    Article  ADS  Google Scholar 

  • Sorkin, R. D. (1983a). On the entropy of the vacuum outside a horizon, in F. de Felice, and A. Pascolini, eds.,Tenth International Conference on General Relativity and Gravitation (Held Padova, 4–9 July, 1983), Contributed Papers, Vol. II, B. Bertotti, Consiglio Nazionale Delle Ricerche, Rome, pp. 734–736.

    Google Scholar 

  • Sorkin, R. D. (1983b). On the entropy of the vacuum outside a horizon, in F. de Felice, and Pascolini, eds. B. Bertotti,Tenth International Conference on General Relativity and Gravitation (held Padova, 4–9 July, 1983), Contributed Papers, Consiglio Nazionale Delle Ricerche, Rome, Vol. II, pp. 734–736.

    Google Scholar 

  • Sorkin, R. D. (1986a). On topology change and monopole creation,Physical Review D,33, 978–982.

    Article  MathSciNet  ADS  Google Scholar 

  • Sorkin, R. D. (1986b). Toward an explanation of entropy increase in the presence of quantum black holes,Physical Review Letters,56, 1885–1888.

    Article  MathSciNet  ADS  Google Scholar 

  • Sorkin, R. D. (1986). Non-time-orientable Lorentzian cobordism allows for pair creation,International Journal of Theoretical Physics,25, 877–881.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sorkin, R. D. (1989). Classical topology and quantum phases: Quantum geons, inGeometrical and Algebraic Aspects of Nonlinear Field Theories, S. de Filippo, M. Marinaro, and G. Marmo, eds., Elsevier, Amsterdam, pp. 201–218.

    Google Scholar 

  • Sorkin, R. D. (1990). Consequences of spacetime topology, inProceedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics, A. Coley, F. Cooperstock, and B. Tupper, eds., World Scientific, Singapore, pp. 137–163.

    Google Scholar 

  • Sorkin, R. D. (1991a), Spacetime and causal sets, inRelativity and Gravitation: Classical and Quantum, J. C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, and F. Zertuche, eds., World Scientific, Singapore, pp. 150–173, and references therein.

    Google Scholar 

  • Sorkin, R. D. (1991b). A finitary substitute for continuous topology?International Journal of Theoretical Physics,30, 923–947.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sorkin, R. D. (1993). Impossible measurements on quantum fields, inDirections in General Relativity: Proceedings of the 1993 International Symposium, Maryland, Vol. 2: Papers in Honor of Dieter Brill, Bei-Lok Hu and T. A. Jacobson, eds., Cambridge University Press, Cambridge 〈e-print archive: gr-qc/9302018〉.

    Google Scholar 

  • Sorkin, R. D. (1994a). On the role of time in the sum-over-histories framework for gravity, Presented to Conference on the History of Modern Gauge Theories, Logan, Utah, July 1987; inInternational Journal of Theoretical Physics,33, 523–534.

  • Sorkin, R. D. (1994b). Quantum mechanics as quantum measure theory,Modern Physics Letters A,9, 3119–3127 〈e-print archive: gr-qc/9401003〉.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sorkin, R. D. (1996). Quantum measure theory and its interpretation, inProceedings of the Fourth Drexel Symposium on Quantum Nonintegrability: Quantum Classical Correspondence, D. H. Feng and B.-L. Hu, eds., International Press, pp. 205–227. 〈e-print archive: gr-qc/9507057〉.

  • Sorkin, R. D., and Surya, S. (n.d.). An analysis of the representations of the mapping class group of a multi-geon three-manifold 〈e-print archive: gr-qc/9605050〉.

  • Srednicki, M. (1993). Entropy and area,Physical Review Letters,71, 666–669 〈e-print archive:hep-th/9303048〉.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Teitelboim, C. (1983) Proper-time gauge in the quantum theory of gravitation,Physical Review D,28, 297–309.

    Article  MathSciNet  ADS  Google Scholar 

  • Thorne, K. S. (1993). Closed timelike curves, inGeneral Relativity and Gravitation, IOP Publishing, Bristol, pp. 295–315.

    Google Scholar 

  • Unruh, W. G. (1989). Unimodular theory of canonical quantum gravity,Physical Review D,40, 1048.

    Article  MathSciNet  ADS  Google Scholar 

  • Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey, Chapter VI.

    MATH  Google Scholar 

  • Wald, R. M. (1993). A proposal for solving the ‘problem of time’ in canonical quantum gravity, Presented at the International Symposium on Directions in General Relativity in Celebration of the Sixtieth Birthdays of Dieter Brill and Charles Misner, College Park, Maryland, May 27–29, 1993.

  • Woo, C. H. (1962). Linear stochastic motions of physical systems, Berkeley University Preprint, UCRL-10431.

  • York, J. W. (1993). Canonical in all directions—Quasilocal energy and the microcanonical functional integral, Talk at the symposium onDirections in General Relativity, University of Maryland, College Park, May 1993, in honor of Dieter Brill and Charles Misner.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is the text of a talk given at the symposium on Directions in General Relativity held at the University of Maryland, College Park, Maryland, in May 1993 in honor of Dieter Brill and Charles Minser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorkin, R.D. Forks in the road, on the way to quantum gravity. Int J Theor Phys 36, 2759–2781 (1997). https://doi.org/10.1007/BF02435709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435709

Keywords

Navigation