Skip to main content
Log in

Experimental Study of Pool Boiling Heat Transfer Coefficient for DI-Water-Based Nanofluids Containing Nickel Oxide in a Constant Magnetic Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Enhancing the boiling efficiency helps improve the productivity of thermal systems. Given the effects of added nanoparticles and applied magnetic field on the boiling process, this study investigates the effects of nickel oxide (NiO) nanoparticle concentration with and without applied magnetic field. The studied nanofluid was synthesized by the two-step method and approved by TEM and DLS stability tests for resistance to flocculation. Five concentrations of nanofluid, namely 0.005, 0.01, 0.05, 0.1, and 0.2), were prepared using nanoparticles with an average size of 30 nm. Moreover, a DC magnetic field with a maximum current of 10 A and a strength of 1000 G in the metal core and 300 G at the center of the core was used to evaluate the effects on nanoparticle boiling. The boiling heat transfer coefficient (BHTC) of deionized (DI) water was then compared with a plot of the Rohsenow correlation in three regions to validate the results and showed remarkable consistency. Moreover, experimental data indicated that the magnetic field affected the shape of DI water bubbles during boiling while improving the fluid’s BHTC. It was also found that a 0.005 volume fraction of added NiO nanoparticles results in an average 35 % improvement, whereas at the 0.2 volume fraction, increased sedimentation drastically impacts the BHTC. The magnetic field improved the BHTC by nearly 10 % at a 0.005 volume fraction, while higher concentrations reversed the effects of the magnetic field. By hindering bubble generation, nanoparticle sedimentation on surfaces also drastically affects the BHTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Int. J. Heat Mass Transf. (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002

    Article  Google Scholar 

  2. X.Q. Wang, A.S. Mujumdar, Braz. J. Chem. Eng. (2008). https://doi.org/10.1590/S0104-66322008000400002

    Article  Google Scholar 

  3. S. Ghasemi, A. Karimipour, Appl. Therm. Eng. 128, 189–197 (2018)

    Article  Google Scholar 

  4. J.M. Wu, J. Zhao, Prog. Nucl. Energy (2013). https://doi.org/10.1016/j.pnucene.2013.03.009

    Article  Google Scholar 

  5. S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, Int. J. Heat Mass Transf. (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018

    Article  Google Scholar 

  6. I.L. Pioro, W. Rohsenow, S.S. Doerffer, Int. J. Heat Mass Transf. (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019

    Article  Google Scholar 

  7. I. Nkurikiyimfura, Y. Wang, Z. Pan, Renew. Sustain. Energy Rev. (2013). https://doi.org/10.1016/j.rser.2012.12.039

    Article  Google Scholar 

  8. H. Kim, Nanoscale Res. Lett. (2011). https://doi.org/10.1186/1556-276X-6-415

    Article  Google Scholar 

  9. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. (2001). https://doi.org/10.1063/1.1408272

    Article  Google Scholar 

  10. R.A. Taylor, P.E. Phelan, Int. J. Heat Mass Transf. (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.040

    Article  Google Scholar 

  11. S. Soltani, S.G. Etemad, J. Thibault, Heat Mass Transf. (2009). https://doi.org/10.1007/s00231-009-0530-9

    Article  Google Scholar 

  12. S. Witharana, Doctoral dissertation, Energiteknik (2003)

  13. M. Kole, T.K. Dey, Appl. Therm. Eng. (2012). https://doi.org/10.1016/j.applthermaleng.2011.10.066

    Article  Google Scholar 

  14. M.B.B. Esfahani, S.M. Sajadi, N.H. Abu-Hamdeh, S. Bezzina, A. Abdollahi, A. Karimipour, F. Ghaemi, D. Baleanu, J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2021.117891

    Article  Google Scholar 

  15. H. Chu, X. Yu, H. Jiang, D. Wang, N. Xu, Int. J. Heat Mass Transf. (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123530

    Article  Google Scholar 

  16. A. Suriyawong, S. Wongwises, Exp. Therm. Fluid Sci. (2010). https://doi.org/10.1016/j.expthermflusci.2010.03.002

    Article  Google Scholar 

  17. P. Vassallo, R. Kumar, S. D’Amico, Int. J. Heat Mass Transf. (2004). https://doi.org/10.1016/S0017-9310(03)00361-2

    Article  Google Scholar 

  18. L. Junhong, G. Jianming, L. Mingqi, L. Hui, L. Zhiwei, J. Heat Transf. ASME (2005). https://doi.org/10.1002/htj.20054

    Article  Google Scholar 

  19. https://www.us-nano.com/inc/sdetail/

  20. H. Chang, B. Liu, Q. Li, X. Yang, P. Zhou, Int. J. Heat Mass Transf. (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.123893

    Article  Google Scholar 

  21. H. Alimoradi, M. Shams, N. Ashgriz, Int. J. Multiph. Flow. (2023). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104350

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AA: Formal analysis; Writing—review & editing; Methodology. MBBE: Formal analysis; Writing—review & editing; Methodology. SMS: Formal analysis; Writing—review & editing; Methodology. AS: Formal analysis; Writing—review & editing; Methodology. MS: Formal analysis; Writing—review & editing; Methodology. AK: Formal analysis; Writing—review & editing; Methodology. MI: Formal analysis; Writing—review & editing; Methodology.

Corresponding authors

Correspondence to Arash Karimipour or Mustafa Inc.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, A., Botlani Esfahani, M.B., Sajadi, S.M. et al. Experimental Study of Pool Boiling Heat Transfer Coefficient for DI-Water-Based Nanofluids Containing Nickel Oxide in a Constant Magnetic Field. Int J Thermophys 44, 62 (2023). https://doi.org/10.1007/s10765-023-03173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03173-7

Keywords

Navigation