Skip to main content
Log in

Effect of Magnetic Fields on the Boiling Heat Transfer Characteristics of Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The main focus of the present study is to investigate the effect of magnetic fields on the pool boiling heat transfer characteristics on the cylindrical surface of nanofluids. The nanofluids with suspended \(\hbox {TiO}_{2}\) nanoparticles in the base fluid refrigerant R141b are used as the working fluid. Effects of magnetic field strength, nanoparticle concentration, and boiling pressure on the pool boiling heat transfer coefficient and the boiling bubble characteristics are considered. In this study, magnetic fields with strengths of \(5.0\times 10^{-4}\,\hbox {T}\), \(7.5\times 10^{-4}\,\hbox {T}\), and \(10.0\times 10^{-4}\,\hbox {T}\) are applied to exert a force on the boiling surface with permanent magnets. According to the experimental results, it is found that the magnetic fields have a significant effect on the pool boiling heat transfer enhancement with a maximum enhancement of 27.91 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Surface area (\(\hbox {m}^{2}\))

I :

Input current (A)

q :

Heat flux (\(\hbox {kW}{\cdot }\hbox {m}^{-2}\))

\(T_{\mathrm{f}}\) :

Fluid temperature (\(^{\circ }\hbox {C}\))

h :

Heat transfer coefficient (\(\hbox {kW}\!\cdot \!\hbox {m}^{-2}\!\cdot ^{\circ }\!\hbox {C}^{-1}\))

Q :

Heat transfer rate (kW)

V :

Input voltage (V)

\(T_{\mathrm{s}}\) :

Surface temperature (\(^{\circ }\hbox {C}\))

References

  1. S. Kamiyama, J. Ishimoto, J. Magn. Magn. Mater. 149, 125 (1995)

    Article  ADS  Google Scholar 

  2. T.C. Jue, Int. Commun. Heat Mass Transfer 33, 846 (2006)

    Article  Google Scholar 

  3. Y. Xuan, Q. Li, M. Ye, Int. J. Therm. Sci. 46, 105 (2007)

    Article  Google Scholar 

  4. Q. Li, W. Lian, H. Sun, Y. Xuan, Int. J. Heat Mass Transfer 51, 5033 (2008)

    Article  MATH  Google Scholar 

  5. W. Lian, Y. Xuan, Q. Li, Int. J. Heat Mass Transfer 52, 5451 (2009)

    Article  MATH  Google Scholar 

  6. W. Lian, Y. Xuan, Q. Li, Energy Convers. Manag. 50, 35 (2009)

    Article  Google Scholar 

  7. M. Lajvardi, J.M. Rad, I. Hadi, A. Gavili, T. DallaliIsfahani, F. Zabihi, J. Magn. Magn. Mater. 322, 3508 (2010)

    Article  ADS  Google Scholar 

  8. M. Ashouri, B. Ebrahimi, M.B. Shafii, M.H. Saidi, M.S. Saidi, J. Magn. Magn. Mater. 322, 3607 (2010)

    Article  ADS  Google Scholar 

  9. Y. Xuan, W. Lian, Appl. Therm. Eng. 31, 1487 (2011)

    Article  Google Scholar 

  10. A.H. Mahmoudi, I. Pop, M. Shahi, Int. J. Therm. Sci. 59, 126 (2012)

    Article  Google Scholar 

  11. M.K. Moraveji, M. Hejazian, Int. Commun. Heat Mass Transfer 39, 1293 (2012)

    Article  Google Scholar 

  12. I. Nkurikiyimfura, Y. Wanga, Z. Pan, Renew. Sust. Energy Rev. 21, 548 (2013)

    Article  Google Scholar 

  13. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Energy 60, 501 (2013)

    Article  Google Scholar 

  14. A. Ghofrani, M.H. Dibaei, A. Hakim Sima, M.B. Shafii, Exp. Therm. Fluid Sci. 49, 193 (2013)

    Article  Google Scholar 

  15. T. Lee, J. Hyuk Lee, Y.H. Jeong, Int. J. Heat Mass Transfer 56, 101 (2013)

    Article  Google Scholar 

  16. T. Lee, D.H. Kam, J.H. Lee, Y.H. Jeong, Int. J. Heat Mass Transfer 74, 278 (2014)

    Article  Google Scholar 

  17. H. Aminfar, M. Mohammadpourfard, Y.N. Kahnamouei, Int. J. Mech. Sci. 78, 81 (2014)

    Article  Google Scholar 

  18. S.A. Moshizi, A. Malvandi, D.D. Ganji, I. Pop, Int. J. Therm. Sci. 84, 347 (2014)

    Article  Google Scholar 

  19. N.S. Akbar, A.W. Butt, J. Magn. Magn. Mater. 381, 285 (2015)

    Article  Google Scholar 

  20. A. Karimipour, A.H. Nezhad, A. D’Orazio, M.H. Esfe, M.R. Safaei, E. Shirani, Eur. J. Mech. Fluids 49, 89 (2015)

    Article  ADS  Google Scholar 

  21. S.K. Nandy, I. Pop, Int. Commun. Heat Mass Transfer 53, 50 (2014)

    Article  Google Scholar 

  22. M. Sheikholeslami, D.D. Ganji, M. Gorji-Bandpy, S. Soleimani, J. Taiwan Inst. Chem. Eng. 45, 795 (2014)

    Article  Google Scholar 

  23. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, S. Soleimani, J. Taiwan Inst. Chem. Eng. 45, 40 (2014)

    Article  Google Scholar 

  24. M. Goharkhah, M. Ashjaee, J. Magn. Magn. Mater. 262, 80 (2014)

    Article  ADS  Google Scholar 

  25. A. Malvandi, D.D. Ganji, J. Magn. Magn. Mater. 362, 172 (2014)

    Article  ADS  Google Scholar 

  26. H.W. Coleman, W.G. Steele, Experimental and Uncertainty Analysis for Engineers (Wiley, New York, 1989)

    Google Scholar 

  27. M.G. Cooper, in 1st UK National Heat Transfer Conference (Inst. Chem. Eng. Symp. Series), vol. 86(2) (Pergamon Press, London, 1984), p. 785

Download references

Acknowledgments

The author would like to express their appreciation to the Excellent Center for Sustainable Engineering (ECSE) of the Srinakharinwirot University (SWU) for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paisarn Naphon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naphon, P. Effect of Magnetic Fields on the Boiling Heat Transfer Characteristics of Nanofluids. Int J Thermophys 36, 2810–2819 (2015). https://doi.org/10.1007/s10765-015-1993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1993-1

Keywords

Navigation