Skip to main content
Log in

Thermal Conductivity Characterization of Fluoride and Chloride Molten Salts Using a Modified Transient Hot-Wire Needle Probe

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Molten salts are being widely considered for use as high-temperature coolants in advanced nuclear reactors. There are a serious lack of experimental data pertaining to their thermophysical properties, especially thermal conductivity, which are paramount to safe thermal hydraulic design. This study seeks to measure the thermal conductivity of several molten fluoride and chloride salts using a modified transient hot-wire needle probe. Building on previous work by the same authors, the multilayered heat transfer model is expanded to account for thermal radiation interactions across the salt layer and is validated using a commercial finite-element package. Sensitivity and correlation analyses are performed to assess the time-dependent influence of critical parameters in the model, including the new radiative terms. Finally, thermal conductivity measurements are presented for LiF–NaF–KF, NaF–KF–MgF\(_{2}\), and LiCl–KCl up to 750 °C and are compared against reference correlations. Total measurement uncertainty is also quantified and tabulated, with the resulting range between ± 14.2 % and ± 29.0 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Available upon request by emailing troy.munro@byu.edu.

References

  1. G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: current status and future prospects. Energy Policy 61, 1503–1520 (2013). https://doi.org/10.1016/j.enpol.2013.06.101

    Article  Google Scholar 

  2. J. Magnusson, M. Memmott, T. Munro, Review of thermophysical property methods applied to fueled and un-fueled molten salts. Ann. Nucl. Energy 146, 107608 (2020). https://doi.org/10.1016/j.anucene.2020.107608

    Article  Google Scholar 

  3. D.F. Williams, L.M. Toth, K.T. Clarno, Assessment of candidate molten salt coolants for the Advanced High-Temperature Reactor (AHTR). http://www.osti.gov/contact.html

  4. C.L. Brun, Molten salts and nuclear energy production. J. Nucl. Mater. 360, 1–5 (2007). https://doi.org/10.1016/j.jnucmat.2006.08.017

    Article  ADS  Google Scholar 

  5. P.N. Haubenreich, J.R. Engel, Experience with the molten-salt reactor experiment. Nucl. Appl. Technol. 8, 118–136 (1970). https://doi.org/10.13182/nt8-2-118

    Article  Google Scholar 

  6. G. Fredrickson, G. Cao, R. Gakhar, T.-S. Yoo, Molten salt reactor salt processing— technology status (2018)

  7. M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties. http://www.inl.gov

  8. C. Fiorina, A. Cammi, L. Luzzi, K. Mikityuk, H. Ninokata, M.E. Ricotti, Thermal-hydraulics of internally heated molten salts and application to the molten salt fast reactor. J. Phys. 501, 012030 (2014). https://doi.org/10.1088/1742-6596/501/1/012030

    Article  Google Scholar 

  9. A.I. Elshafei, A. Guaily, M.A. Boraey, Comparative study of Nusselt number correlations for HITEC molten sal., in 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 282–287 (2020). https://doi.org/10.1109/NILES50944.2020.9257940

  10. A. Kuchibhotla, D. Banerjee, V. Dhir, Forced convection heat transfer of molten salts: a review. Nucl. Eng. Des. 362, 110591 (2020). https://doi.org/10.1016/j.nucengdes.2020.110591

    Article  Google Scholar 

  11. P. Sabharwall, M. Ebner, M. Sohal, P. Sharpe, M. Anderson, K. Sridharan, J. Ambrosek, L. Olson, P. Brooks, Molten salts for high temperature reactors: university of wisconsin molten salt corrosion and flow loop experiments-issues identified and path forward. http://www.inl.gov

  12. V. Khokhlov, V. Ignatiev, V. Afonichkin, Evaluating physical properties of molten salt reactor fluoride mixtures. J. Fluorine Chem. 130, 30–37 (2009). https://doi.org/10.1016/j.jfluchem.2008.07.018

    Article  Google Scholar 

  13. R.R. Romatoski, L.W. Hu, Fluoride salt coolant properties for nuclear reactor applications: a review. Ann. Nucl. Energy 109, 635–647 (2017). https://doi.org/10.1016/j.anucene.2017.05.036

    Article  Google Scholar 

  14. R.C. Gallagher, A. Birri, N.G. Russell, A.-T. Phan, A.E. Gheribi, Investigation of the thermal conductivity of molten LiF-NaF-KF with experiments, theory, and equilibrium molecular dynamics. J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2022.119151

    Article  Google Scholar 

  15. A.E. Gheribi, P. Chartrand, Thermal conductivity of molten salt mixtures: theoretical model supported by equilibrium molecular dynamics simulations. J. Chem. Phys. 144, 084506 (2016). https://doi.org/10.1063/1.4942197

    Article  ADS  Google Scholar 

  16. A.Z. Zhao, M.C. Wingert, R. Chen, J.E. Garay, Phonon gas model for thermal conductivity of dense, strongly interacting liquids. J. Appl. Phys. 129, 235101 (2021). https://doi.org/10.1063/5.0040734

    Article  ADS  Google Scholar 

  17. A.E. Gheribi, J.A. Torres, P. Chartrand, Recommended values for the thermal conductivity of molten salts between the melting and boiling points. Sol. Energy Mater. Sol. Cells 126, 11–25 (2014). https://doi.org/10.1016/j.solmat.2014.03.028

    Article  Google Scholar 

  18. Y. Nagasaka, N. Nakazawa, A. Nagashima, Experimental determination of thethermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. I. Molten LiCl, NaCl, KCl, RbCl, and CsCl. Int. J. Thermophys. 13, 555–574 (1992)

    Article  ADS  Google Scholar 

  19. C. Agca, K.E. Johnson, J.W. Mcmurray, J.A. Yingling, FY21 Status report on the Molten Salt Thermal Properties Database (MSTDB) Development. www.osti.gov

  20. S. Guillot, A. Faik, A. Rakhmatullin, J. Lambert, E. Veron, P. Echegut, C. Bessada, N. Calvet, X. Py, Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl. Energy 94, 174–181 (2012). https://doi.org/10.1016/j.apenergy.2011.12.057

    Article  Google Scholar 

  21. G. Gao, F.H. Stott, J.L. Dawson, D.M. Farrell, Electrochemical monitoring of high-temperature molten-salt corrosion. Oxid. Met. 33, 79–94 (1990). https://doi.org/10.1007/BF00665670

    Article  Google Scholar 

  22. C.D. Chliatzou, M.J. Assael, K.D. Antoniadis, M.L. Huber, W.A. Wakeham, Reference correlations for the thermal conductivity of 13 inorganic molten salts. J. Phys. Chem. Reference Data 47, 033104 (2018). https://doi.org/10.1063/1.5052343

    Article  ADS  Google Scholar 

  23. R. Santini, L. Tadrist, J. Pantaloni, P. Cerisier, Measurement of thermal conductivity of molten salts in the range \(100-500^\circ {\text{ C }}\). Int. J. Heat Mass Transf. 27, 623–626 (1984). https://doi.org/10.1016/0017-9310(84)90034-6

    Article  Google Scholar 

  24. L. Cooper, S.J. Claiborne, Measurement of the Thermal Conductivity of Flinak (Oak Ridge National Lab, Tenn, 1952)

    Book  Google Scholar 

  25. V. Khokhlov, I. Korzun, V. Dokutovich, E. Filatov, Heat capacity and thermal conductivity of molten ternary lithium, sodium, potassium, and zirconium fluorides mixtures. J. Nucl. Mater. 410, 32–38 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.306

    Article  ADS  Google Scholar 

  26. M.V. Smirnov, V.A. Khokhlov, E.S. Filatov, Thermal conductivity of molten alkali halides and their mixtures. Electrochim. Acta 32, 1019–1026 (1987)

    Article  Google Scholar 

  27. S. Kitade, Y. Kobayashi, Y. Nagasaka, A. Nagashima, Measurement of the thermal conductivity of molten KNO\(_{3}\) and NaNO\(_{3}\) by the transient hot-wire method with ceramic-coated probes. High Temp. High Press. 21, 219–224 (1989)

    Google Scholar 

  28. Y. Ueki, N. Fujita, J. Yagi, M. Shibaraha, A. Sagara, Thermal conductivity measurement of fluoride molten salt Flinak by transient hot-wire method. High Temp. High Press. 46, 247–254 (2017)

    Google Scholar 

  29. M. Harada, A. Shioi, T. Miura, S. Okumi, Thermal conductivities of molten alkali metal halides. Ind. Eng. Chem. Res. 31, 2400–2407 (1992)

    Article  Google Scholar 

  30. X.H. An, J.H. Cheng, H.Q. Yin, L.D. Xie, P. Zhang, Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique. Int. J. Heat Mass Transf. 90, 872–877 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.042

    Article  Google Scholar 

  31. B. Merritt, M. Seneca, S. Larson, K. Davis, T. Munro, Measurements of the thermal conductivity of reference liquids using a modified transient hot-wire needle probe. Int. J. Heat Mass Transf. 189, 122674 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122674

    Article  Google Scholar 

  32. M.C. Wingert, A.Z. Zhao, Y. Kodera, S.J. Obrey, J.E. Garay, Frequency-domain hot-wire sensor and 3d model for thermal conductivity measurements of reactive and corrosive materials at high temperatures. Rev. Sci. Instrum. 91, 054904 (2020). https://doi.org/10.1063/1.5138915

    Article  ADS  Google Scholar 

  33. K.D. Antoniadis, G.J. Tertsinidou, M.J. Assael, W.A. Wakeham, Necessary conditions for accurate, transient hot-wire measurements of the apparent thermal conductivity of nanofluids are seldom satisfied. Int. J. Thermophys. 37, 1–22 (2016). https://doi.org/10.1007/s10765-016-2083-8

    Article  Google Scholar 

  34. M. Gonik, V. Golyshev, High-temperature thermophysical properties of nonscattering semitransparent materials III: thermal conductivity of melts. High Temp. High Press. 24, 677–688 (1992)

    Google Scholar 

  35. V. Golyshev, M. Gonik, High-temperature thermophysical properties of nonscattering semitransparent materials I: methods and instrumentation for the determination of spectral absorptivity and thermal conductivity of melts. High Temp. High Press. 24, 367–377 (1992)

    Google Scholar 

  36. P. Gechuanqi, L. Jianfeng, W. Xiaolan, D. Jing, The simulation of the steady-state concentric cylinder method for determining thermal conductivity of sodium nitrate. Energy Procedia 61, 459–462 (2014). https://doi.org/10.1016/j.egypro.2014.11.1148

    Article  Google Scholar 

  37. P. Hartvigsen, Raman thermometry for uranium dioxide and needle probe for molten salts. Master’s thesis (2020). http://hdl.lib.byu.edu/1877/etd11369

  38. J.E. Daw, J.L. Rempe, D.L. Knudson, Hot wire needle probe for in-reactor thermal conductivity measurement. IEEE Sens. J. 12, 2554–2560 (2012). https://doi.org/10.1109/JSEN.2012.2195307

    Article  ADS  Google Scholar 

  39. ASTM: D 5334-14 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure

  40. M. Corradini, M. Anderson, G. Imel, T. Blue, J. Roberts, K. Davis, advanced instrumentation for transient reactor testing. https://doi.org/10.2172/1433345.

  41. S.S. Raiman, G. Muralidharan, R.T. Mayes, J.M. Kurley, Compatibility studies of cladding candidates and advanced low-Cr superalloys in molten NaCl-MgCl\(_{2}\). https://info.ornl.gov/sites/publications/Files/Pub123709.pdf

  42. Y. Jannot, D. Khalifa, L. Penazzi, A. Degiovanni, Thermal conductivity measurement of insulating materials up to 1000\(^\circ \) C with a needle probe. Rev. Sci. Instrum. 92, 064903 (2021). https://doi.org/10.1063/5.0050000

    Article  ADS  Google Scholar 

  43. D. Maillet, S. Andre, J.C. Batsale, A. Degiovanni, C. Moyne, C.-I. National, P.D. Lorraine, U. Henri, I. Nancy, J. Wiley, B. Lane, W. Sussex, P. Iud, Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms (Wiley, New York, 2000)

    Google Scholar 

  44. C. Hollar, Material Properties of Thermoelectric and Nuclear Energy Sources (University of Idaho, Moscow, 2019)

    Google Scholar 

  45. C.B. Jensen, Bridging the Nano- and Macro-Worlds: Thermal Property Measurement Using Thermal Microscopy and Photothermal Radiometry-Application to Particle-Irradiation Damage Profile in Zirconium Carbide (Utah State University, Logan, 2014)

    Google Scholar 

  46. A. Salazar, R. Celorrio, Application of the thermal quadrupole method to the propagation of thermal waves in multilayered cylinders. J. Appl. Phys. 100, 113535 (2006). https://doi.org/10.1063/1.2400403

    Article  ADS  Google Scholar 

  47. C. Coyle, E. Baglietto, C. Forsberg, Advancing radiative heat transfer modeling in high-temperature liquid salts. Nucl. Sci. Eng. 194, 782–792 (2020). https://doi.org/10.1080/00295639.2020.1723993

    Article  Google Scholar 

  48. C. Hollar, A. Fleming, K. Davis, R. Budwig, C. Jensen, D. Estrada, A parametric study for in-pile use of the thermal conductivity needle probe using a transient, multilayered analytical model. Int. J. Therm. Sci. 145, 106028 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.106028

    Article  Google Scholar 

  49. A. Fleming, C. Hollar, K. Davis, C. Jensen, D. Estrada, Transient needle probe technique for in-pile thermal conductivity measurements. Transactions 121, 669–671 (2019). https://doi.org/10.13182/T31337

    Article  Google Scholar 

  50. E.S. Chaleff, T. Blue, P. Sabharwall, Radiation heat transfer in the molten salt Flinak. Nucl. Technol. 196, 53–60 (2016). https://doi.org/10.13182/NT16-52

    Article  Google Scholar 

  51. J.W. Cooke, ORNL-4831 Development of the Variable-gap Technique for Measuring the Thermal Conductivity of Fluoride Salt Mixtures

  52. B.H. Bloom, D.C. Rhodes, Molten salt mixtures. Part 2. The refractive index of molten nitrate mixtures and their molar refractivities. https://pubs.acs.org/sharingguidelines

  53. M. Tetreault-Friend, L.A. Gray, S. Berdibek, T. McKrell, A.H. Slocum, Optical properties of high temperature molten salt mixtures for volumetrically absorbing solar thermal receiver applications. Sol. Energy 153, 238–248 (2017). https://doi.org/10.1016/j.solener.2017.05.054

    Article  ADS  Google Scholar 

  54. J.-H. Cheng, P. Zhang, X.-H. An, K. Wang, Y. Zuo, H.-W. Yan, Z. Li, A device for measuring the density and liquidus temperature of molten fluorides for heat transfer and storage. Chin. Phys. Lett. 30, 126501 (2013). https://doi.org/10.1088/0256-307X/30/12/126501

    Article  Google Scholar 

  55. A.R. Solano, A. Clark, K.P. Detrick, M.J. Memmott, S.D. Nickerson, Characterization of the molten salt FMgNaK through ab initio molecular dynamics and experimental density measurements. J. Nucl. Mater. 557, 153248 (2021). https://doi.org/10.1016/j.jnucmat.2021.153248

    Article  Google Scholar 

  56. K. Duemmler, Y. Lin, M. Woods, T. Karlsson, R. Gakhar, B. Beeler, Evaluation of thermophysical properties of the LiCl-KCl system via ab initio and experimental methods. J. Nucl. Mater. 559, 153414 (2022). https://doi.org/10.1016/j.jnucmat.2021.153414

    Article  Google Scholar 

  57. A.A. Redkin, Y.P. Zaikov, I.V. Korzun, O.G. Reznitskikh, T.V. Yaroslavtseva, S.I. Kumkov, Heat capacity of molten halides. J. Phys. Chem. B 119, 509–512 (2015). https://doi.org/10.1021/jp509932e

    Article  Google Scholar 

  58. T.R. Pavlov, D. Staicu, L. Vlahovic, R.J.M. Konings, P.V. Uffelen, M.R. Wenman, A new method for the characterization of temperature dependent thermo-physical properties. Int. J. Therm. Sci. 124, 98–109 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.10.008

    Article  Google Scholar 

  59. E. Gunnell, A. Avery, L. Gunnell, M. Spotts, M. Stoddard, J.N. Harb, Mo deposition and dissolution in des with the use of fluoride salts. J. Electrochem. Soc. 168, 046501 (2021). https://doi.org/10.1149/1945-7111/abf018

    Article  ADS  Google Scholar 

  60. Artsdalen, E.R.V., Vol, I.S.Y., Artsdalen, B.E.R.V., Yaffe, I.S., Bloom, H., Knaggs, J.W., MoIIoy, J.J., Welch, D., Soc, T.F., Karpachev, S.V., Stromberg, A.G., Padchainova, N., Khim, Z.O., Edwards, J.O., Taylor, C.S., Russell, A.S., Maranville, L.F., Soc, J.E., Huber, P.W., Potter, V., Clair, H.W.S., Bureau, U.S., van Arkel, A.E., Flood, E.A., Bright, N.F.H.: Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI. https://pubs.acs.org/sharingguidelines

  61. Olson, L.C., Fuentes, R.E., Martinez-Rodriguez, M.J., Ambrosek, J.W., Sridharan, K., Anderson, M.H., Garcia-Diaz, B.L., Gray, J., Allen, T.R.: Impact of corrosion test container material in molten fluorides. J. Solar Energy Eng. 137 (2015)

  62. S. Metals, Nickel200. https://www.specialmetals.com/documents/technical-bulletins/nickel-200.pdf

  63. K.J. Hollenbeck, INVLAP.M: A matlab function for numerical inversion of laplace transforms by the de Hoog algorithm. http://www.isva.dtu.dk/staff/karl/invlap.htm

  64. C. Xing, T. Munro, C. Jensen, H. Ban, Analysis of the electrothermal technique for thermal property characterization of thin fibers. Meas. Sci. Technol. 24, 105603 (2013). https://doi.org/10.1088/0957-0233/24/10/105603

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding for this research has come from the Department of Energy, Nuclear Energy University Program (NEUP): Award \(\#\)19-17413, the Nuclear Regulatory Commission: Award \(\#\)31310019M0006, and the NEUP (UNLP) Graduate Fellowship. Toni Karlsson at Idaho National Laboratory provided additional funds for supplies and labor as part of INL Contract 238361.

Funding

Funding was provided by the Nuclear Energy University Program Award #19-17413, the Nuclear Regulatory Commission Award #31310019M0006, and the Nuclear Energy University Program Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TM and AF; Data Curation: BM; Formal Analysis: BM; Funding Acquisition: TM; Investigation: MS, BW, NC, and NP; Methodology: BM and TM; Project Administration: BM and TM; Resources: AF and TM; Software: BM and MS; Supervision: TM; Validation: BM; Visualization: BM and NP; Writing—Original Draft: BM, MS, BW, NC, and NP; Writing—Review & Editing: BM, AF, and TM.

Corresponding author

Correspondence to Troy Munro.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merritt, B., Seneca, M., Wright, B. et al. Thermal Conductivity Characterization of Fluoride and Chloride Molten Salts Using a Modified Transient Hot-Wire Needle Probe. Int J Thermophys 43, 149 (2022). https://doi.org/10.1007/s10765-022-03073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03073-2

Keywords

Navigation