Skip to main content
Log in

Modeling Interfacial Tension of Hexane \(+\) Alcohol Mixtures at Different Temperatures Using Linear Gradient Theory with Cubic Plus Association Equation of State

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work has been dedicated to modeling the interfacial tension of hexane \(+\) alcohol mixtures in the temperature range of 283.15 K to 313.15 K. The cubic plus association equation of state is applied to the liquid–vapor phase equilibrium calculations. The binary interaction parameters are obtained according to the experimental phase equilibrium data. The linear gradient theory is used as a predictive and adjustment approach to describe the interfacial tension of hexane \(+\) alcohol mixtures. The influence parameters of the pure components were correlated with the temperature and the symmetric parameters were correlated with the temperature and with the carbon number of the alcohol. The results of this work show that the equation of state used is capable of simultaneously representing the phase equilibrium and interfacial tension of the mixtures studied. Despite using the simplified version of the gradient theory, the results obtained in the interfacial tension are in agreement with those published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

P :

Absolute pressure

T :

Absolute temperature

\(a_0\) :

Adjustable parameter of the CPA-EOS

\(c_1\) :

Adjustable parameter of the CPA EOS

A :

Adjustable parameter of the influence parameter

B :

Adjustable parameter of the influence parameter

a :

Attractive parameter in CPA-EOS

b :

Covolume parameter in the CPA-EOS

\(f_0\) :

Helmholtz energy density

c :

Influence parameter

\(k_{ij}\) :

Interaction parameter in the CPA-EOS

x :

Mole fraction of the liquid phase

C :

Number of carbons in the alcohol

\(n_c\) :

Number of components

n :

Number of points

z :

Position in the interface

AAD :

Statistical deviation

\(X_{A_i}\) :

The mole fraction of the molecule i not bonded at site A

g :

The radial distribution function

R :

Universal gas constant

\(\mu \) :

Chemical potential

\(\Omega \) :

Grand thermodynamic potential

\(\sigma \) :

Interfacial tension

\(\rho \) :

Molar concentration

\(\eta \) :

Reduced density

\(\beta _{ij}\) :

Symmetric parameter

\(\epsilon ^{A_i B_i}\) :

The association energy

\(\Delta ^{A_i B_j}\) :

The association strength

\(\beta ^{A_i B_i}\) :

The association volume

c :

Critical condition

ijs :

Species

0:

Equilibrium condition

exp :

Experimental

L :

Liquid phase

theo :

Theoretical

V :

Vapor phase

References

  1. I.V. Yakoumis, G.M. Kontogeorgis, E.C. Voutsas, D.P. Tassios, Vapor–liquid equilibria for alcoholhydrocarbon systems using the cpa equation of state. Fluid Phase Equilib. 130, 31–47 (1997)

    Article  Google Scholar 

  2. L. Segade, J Jiménez de Llano, M. Domínguez-Pérez, O. Cabeza, M. Cabanas, E. Jiménez, Density, surface tension, and refractive index of octane+ 1-alkanol mixtures at t = 298.15 k. J. Chem. Eng. Data 48, 1251–1255 (2003)

    Article  Google Scholar 

  3. P.M.W. Cornelisse. The Gradient Theory Applied, Simultaneous Modelling of Interfacial Tension and Phase Behaviour. PhD thesis, Technische Universiteit Delft (1997)

  4. X. Liang, M.L. Michelsen, General approach for solving the density gradient theory in the interfacial tension calculations. Fluid Phase Equilib. 451, 79–90 (2017)

    Article  Google Scholar 

  5. X. Liang, M.L. Michelsen, G.M. Kontogeorgis, A density gradient theory based method for surface tension calculations. Fluid Phase Equilib. 428, 153–163 (2016)

    Article  Google Scholar 

  6. X. Liang, M.L. Michelsen, G.M. Kontogeorgis, Pitfalls of using the geometric-mean combining rule in the density gradient theory. Fluid Phase Equilib. 415, 75–83 (2016)

    Article  Google Scholar 

  7. J. Mairhofer, J. Gross, Modeling of interfacial properties of multicomponent systems using density gradient theory and pcp-saft. Fluid Phase Equilib. 439, 31–42 (2017)

    Article  Google Scholar 

  8. J. Mairhofer, J. Gross, Modeling properties of the one-dimensional vapor–liquid interface: Application of classical density functional and density gradient theory. Fluid Phase Equilib. 458, 243–252 (2018)

    Article  Google Scholar 

  9. A. Mejía, H. Segura, L. Vega, J. Wisniak, Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures: an approach based on cubic equations of state with improved mixing rules. Fluid Phase Equilib. 227, 225–238 (2005)

    Article  Google Scholar 

  10. Y.-X. Zuo, E.H. Stenby, Calculation of surface tensions of polar mixtures with a simplified gradient theory model. J. Chem. Eng. Jpn. 29, 159–165 (1996)

    Article  Google Scholar 

  11. A. Hernández, M. Cartes, A. Mejía, Measurement and modeling of isobaric vapor-liquid equilibrium and isothermal interfacial tensions of ethanol+ hexane+ 2, 5-dimethylfuran mixture. Fuel 229, 105–115 (2018)

    Article  Google Scholar 

  12. S. Khosharay, F. Varaminian, Modeling interfacial tension of (ch4+ n2)+ h2o and (n2+ co2)+ h2o systems using linear gradient theory. Korean J. Chem. Eng. 30, 724–732 (2013)

    Article  Google Scholar 

  13. L.M.C. Pereira, A. Chapoy, R. Burgass, B. Tohidi, Measurement and modelling of high pressure density and interfacial tension of (gas+n-alkane) binary mixtures. J. Chem. Thermodyn. 97, 55–69 (2016)

    Article  Google Scholar 

  14. K.A.G. Schmidt, G.K. Folas, B. Kvamme, Calculation of the interfacial tension of the methane–water system with the linear gradient theory. Fluid Phase Equilib. 261, 230–237 (2007)

    Article  Google Scholar 

  15. W. Yan, G.-Y. Zhao, G.-J. Chen, T.-M. Guo, Interfacial tension of (methane+ nitrogen)+ water and (carbon dioxide+ nitrogen)+ water systems. J. Chem. Eng. Data 46, 1544–1548 (2001)

    Article  Google Scholar 

  16. Y.-X. Zuo, E.H. Stenby, A linear gradient theory model for calculating interfacial tensions of mixtures. J. Colloid interface Sci. 182, 126–132 (1996)

    Article  ADS  Google Scholar 

  17. Y.-X. Zuo, E.H. Stenby et al., Prediction of interfacial tensions of reservoir crude oil and gas condensate systems. SPE J. 3, 134–145 (1998)

    Article  Google Scholar 

  18. G.M. Kontogeorgis, E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, An equation of state for associating fluids. Ind. Eng. Chem. Res. 35, 4310–4318 (1996)

    Article  Google Scholar 

  19. G. Folas, Modeling of complex mixtures containing hydrogen bonding molecules (2007)

  20. G.K. Folas, J. Gabrielsen, M.L. Michelsen, E.H. Stenby, G.M. Kontogeorgis, Application of the cubic-plus-association (cpa) equation of state to cross-associating systems. Ind. Eng. Chem. Res. 44, 3823–3833 (2005)

    Article  Google Scholar 

  21. E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, Prediction of phase equilibria in water/alcohol/alkane systems. Fluid Phase Equilib. 158, 151–163 (1999)

    Article  Google Scholar 

  22. G. Soave, Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  23. S.H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990)

    Article  Google Scholar 

  24. G.M. Kontogeorgis, I.V. Yakoumis, H. Meijer, E. Hendriks, T. Moorwood, Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures. Fluid Phase Equilib. 158, 201–209 (1999)

    Article  Google Scholar 

  25. T.Y. Kwak, G.A. Mansoori, Van der waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling. Chem. Eng. Sci. 41, 1303–1309 (1986)

    Article  Google Scholar 

  26. C. Miqueu, B. Mendiboure, A. Graciaa, J. Lachaise, Modelling of the surface tension of pure components with the gradient theory of fluid interfaces: a simple and accurate expression for the influence parameters. Fluid Phase Equilib. 207, 225–246 (2003)

    Article  Google Scholar 

  27. T.E.V. Prasad, B.S. Kumar, P.G. Naveen, V.V.J. Prasad, D.H.L. Prasad, Boiling temperature measurements on the binary mixtures of n-hexane with some aliphatic alcohols. Phys. Chem. Liquids 41, 39–43 (2003)

    Article  Google Scholar 

  28. M. Goral, P. Oracz, A. Skrzecz, A. Bok, A. Maczynski, Recommended vapor-liquid equilibrium data. part 1: binary n-alkanol–n-alkane systems. J. Phys. Chem. Ref. Data 31, 701–748 (2002)

    Article  ADS  Google Scholar 

  29. B. Giner, A. Villares, S. Martín, H. Artigas, C. Lafuente, Study of the temperature dependence of surface tensions of some alkanol + hexane mixtures. J. Chem. Eng. Data 52, 1904–1907 (2007)

    Article  Google Scholar 

  30. E. Jiménez, H. Casas, L. Segade, C. Franjo, Surface tensions, refractive indexes and excess molar volumes of hexane+ 1-alkanol mixtures at 298.15 k. J. Chem. Eng. Data 45, 862–866 (2000)

    Article  Google Scholar 

  31. D. Papaioannou, C.G. Panayiotou, Surface tensions and relative adsorptions in hydrogen-bonded systems. J. Chem. Eng. Data 39, 457–462 (1994)

    Article  Google Scholar 

  32. R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind. Eng. Chem. Res. 32, 1419–1430 (1993)

    Article  Google Scholar 

  33. R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind. Eng. Chem. Res. 34, 3173–3173 (1995)

    Article  Google Scholar 

  34. T.E. Daubert, R.P. Danner, Physical and thermodynamic properties of pure chemicals data compilation (Taylor & Francis, Bristol, 1989)

    Google Scholar 

  35. M.B. Oliveira, I.M. Marrucho, J.A.P. Coutinho, A.J. Queimada, Surface tension of chain molecules through a combination of the gradient theory with the cpa eos. Fluid Phase Equilib. 267, 83–91 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

A.H acknowledges the economic support given by the UCSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A. Modeling Interfacial Tension of Hexane \(+\) Alcohol Mixtures at Different Temperatures Using Linear Gradient Theory with Cubic Plus Association Equation of State. Int J Thermophys 41, 125 (2020). https://doi.org/10.1007/s10765-020-02703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02703-x

Keywords

Navigation