Skip to main content
Log in

Modeling Interfacial Tension of Heptane + Alcohol Mixtures Using Cubic Plus Association Equation of State Plus Simplified Gradient Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work has been dedicated to modeling the interfacial tension of the heptane + alcohol mixtures in the temperature range of 288.15 K to 333.15 K. The cubic plus association equation of state is applied to the liquid–vapor phase equilibrium calculations. The binary interaction parameters are obtained according to the experimental isothermal and isobaric phase equilibrium data. For the binary interaction parameters, correlations have been obtained as a function of temperature for isothermal phase equilibrium, and a constant value for isobaric phase equilibrium. The linear gradient theory is used as a predictive and adjustment approach to describe the interfacial tension of the heptane + alcohol mixtures. The influence parameters of the pure components were constant and the symmetric parameters of the binary mixtures were correlated with the temperature. The results of this work show that the cubic plus association equation of state is capable of simultaneously representing the phase equilibrium and interfacial tension of the mixtures studied. The results obtained in the interfacial tension are in agreement with those published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

a :

Attractive parameter in CPA-EOS

\(a_0\) :

Adjustable parameter of the CPA-EOS

AAD:

statistical deviation

b :

Covolume parameter in the CPA-EOS

C :

Number of carbons in the alcohol

c :

Influence parameter

c 1 :

Adjustable parameter of the CPA EOS

f 0 :

Helmholtz energy density

g :

The radial distribution function

\(k_{ij}\) :

Interaction parameter in the CPA-EOS

n :

Number of points

\(n_c\) :

Number of components

P :

Absolute pressure

R :

Universal gas constant

T :

Absolute temperature

x :

Mole fraction of the liquid phase

\(X_{A_i}\) :

The mole fraction of the molecule i not bonded at site A

z :

Position in the interface

\(\beta ^{A_i B_i}\) :

The association volume

\(\beta _{ij}\) :

Symmetric parameter

\(\Delta ^{A_i B_j}\) :

The association strength

\(\epsilon ^{A_i B_i}\) :

The association energy

\(\eta\) :

Reduced density

\(\mu\) :

Chemical potential

\(\Omega\) :

Grand thermodynamic potential

\(\rho\) :

Molar concentration

\(\sigma\) :

Interfacial tension

c :

Critical condition

ijs :

Species

0:

Equilibrium condition

exp :

Experimental

L :

Liquid phase

theo :

Theoretical

V :

Vapor phase

References

  1. I.V. Yakoumis, G.M. Kontogeorgis, E.C. Voutsas, D.P. Tassios, Vapor-liquid equilibria for alcoholhydrocarbon systems using the CPA equation of state. Fluid Phase Equilib. 130, 31–47 (1997)

    Article  Google Scholar 

  2. L. Segade, J. Jiménez de Llano, M. Domínguez-Pérez, O. Cabeza, M. Cabanas, E. Jiménez, Density, surface tension, and refractive index of octane+ 1-alkanol mixtures at t= 298.15 k. J. Chem. Eng. Data 48, 1251–1255 (2003)

    Article  Google Scholar 

  3. A. Hernández, Modeling interfacial tension of hexane + alcohol mixtures at different temperatures using linear gradient theory with cubic plus association equation of state. Int. J. Thermophys. 41, 1–18 (2020)

    Article  Google Scholar 

  4. J.D. van der Waals, The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density. Zeit Phys. Chem. 13, 675–725 (1894)

    Google Scholar 

  5. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  MATH  Google Scholar 

  6. A. Mejía, J.C. Pàies, D. Duque, H. Segura, L.F. Vega, Phase and interface behaviors in type-i and type-v Lennard–Jones mixtures Theory and simulations. J. Chem. Phys. 123, 034505 (2005)

    Article  ADS  Google Scholar 

  7. X. Liang, M.L. Michelsen, G.M. Kontogeorgis, A density gradient theory based method for surface tension calculations. Fluid Phase Equilib. 428, 153–163 (2016)

    Article  Google Scholar 

  8. A. Hernández, Interfacial behavior prediction of alcohol+ glycerol mixtures using gradient theory. Chem. Phys. 534, 110747 (2020)

    Article  Google Scholar 

  9. Y.-X. Zuo, E.H. Stenby, Calculation of surface tensions of polar mixtures with a simplified gradient theory model. J. Chem. Eng. Jpn. 29, 159–165 (1996)

    Article  Google Scholar 

  10. K.A.G. Schmidt, G.K. Folas, B. Kvamme, Calculation of the interfacial tension of the methane-water system with the linear gradient theory. Fluid Phase Equilib. 261, 230–237 (2007)

    Article  Google Scholar 

  11. A. Mejía, H. Segura, L. Vega, J. Wisniak, Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures: an approach based on cubic equations of state with improved mixing rules. Fluid Phase Equilib. 227, 225–238 (2005)

    Article  Google Scholar 

  12. X. Liang, M.L. Michelsen, General approach for solving the density gradient theory in the interfacial tension calculations. Fluid Phase Equilib. 451, 79–90 (2017)

    Article  Google Scholar 

  13. G.M. Kontogeorgis, G.K. Folas, Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories (Wiley, Hoboken, 2009)

    Google Scholar 

  14. G.M. Kontogeorgis, E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, An equation of state for associating fluids. Ind. Eng. Chem. Res. 35, 4310–4318 (1996)

    Article  Google Scholar 

  15. X. Liang, M.L. Michelsen, G.M. Kontogeorgis, Pitfalls of using the geometric-mean combining rule in the density gradient theory. Fluid Phase Equilib. 415, 75–83 (2016)

    Article  Google Scholar 

  16. G.K. Folas, J. Gabrielsen, M.L. Michelsen, E.H. Stenby, G.M. Kontogeorgis, Application of the cubic-plus-association (CPA) equation of state to cross-associating systems. Ind. Eng. Chem. Res. 44, 3823–3833 (2005)

    Article  Google Scholar 

  17. E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, Prediction of phase equilibria in water/alcohol/alkane systems. Fluid Phase Equilib. 158, 151–163 (1999)

    Article  Google Scholar 

  18. G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  19. S.H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990)

    Article  Google Scholar 

  20. G.M. Kontogeorgis, I.V. Yakoumis, H. Meijer, E. Hendriks, T. Moorwood, Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures. Fluid Phase Equilib. 158, 201–209 (1999)

    Article  Google Scholar 

  21. T.Y. Kwak, G.A. Mansoori, Van der Waals mixing rules for cubic equations of state. applications for supercritical fluid extraction modelling. Chem. Eng. Sci. 41, 1303–1309 (1986)

    Article  Google Scholar 

  22. Y.-X. Zuo, E.H. Stenby, A linear gradient theory model for calculating interfacial tensions of mixtures. J. Colloid Interface Sci. 182, 126–132 (1996)

    Article  ADS  Google Scholar 

  23. Y.-X. Zuo, E.H. Stenby et al., Prediction of interfacial tensions of reservoir crude oil and gas condensate systems. SPE J. 3, 134–145 (1998)

    Article  Google Scholar 

  24. M.B. Oliveira, I.M. Marrucho, J.A.P. Coutinho, A.J. Queimada, Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. Fluid Phase Equilib. 267, 83–91 (2008)

    Article  Google Scholar 

  25. D. Papaioannou, C.G. Panayiotou, Surface tensions and relative adsorptions in hydrogen-bonded systems. J. Chem. Eng. Data 39, 457–462 (1994)

    Article  Google Scholar 

  26. I.A. McLure, J.T. Sipowska, I.L. Pegg, Surface tensions of (an alkanol+ an alkane)1. Propan-1-ol+ heptane. J. Chem. Thermodyn. 14, 733–741 (1982)

    Article  Google Scholar 

  27. J. Vijande, M.M. Pineiro, J. García, J.L. Valencia, J.L. Legido, Density and surface tension variation with temperature for heptane+ 1-alkanol. J. Chem. Eng. Data 51, 1778–1782 (2006)

    Article  Google Scholar 

  28. C. Berro, M. Rogalski, A. Péneloux, A new ebulliometric technique. Vapour-liquid equilibria in the binary systems ethanol-n-heptane and ethanol-n-nonane. Fluid Phase Equilib. 8, 55–73 (1982)

    Article  Google Scholar 

  29. S.G. Sayegh, J.H. Vera, G.A. Ratcliff, Vapor-liquid equilibria for the ternary system n-heptane/n-propanol/l-chlorobutane and its constituent binaries at 298.15 k. Can. J. Chem. Eng. 57, 513–519 (1979)

    Article  Google Scholar 

  30. A.G. Pradhan, V.R. Bhethanabotla, S.W. Campbell, Vapor-liquid equilibrium data for ethanol-n-heptane-1-propanol and ethanol-n-heptane-2-propanol and their interpretation by a simple association model. Fluid Phase Equilib. 84, 183–206 (1993)

    Article  Google Scholar 

  31. H.C. Van Ness, C.A. Soczek, G.L. Peloquin, R.L. Machado, Thermodynamic excess properties of three alcohol-hydrocarbon systems. J. Chem. Eng. Data 12, 217–224 (1967)

    Article  Google Scholar 

  32. J.R. Powell, M.E.R. McHale, A.M. Kauppila, W.E. Acree, P.H. Flanders, V.G. Varanasi, S.W. Campbell, Prediction of anthracene solubility in alcohol+ alkane solvent mixtures using binary alcohol+ alkane vle data. comparison of kretschmer-wiebe and mobile order models. Fluid Phase Equilib. 134, 185–200 (1997)

    Article  Google Scholar 

  33. A. Belabbaci, R.M. Villamanan, L. Negadi, C.M. Martin, A Ait Kaci, M. Villamanan, Vapor–liquid equilibria of binary mixtures containing 1-butanol and hydrocarbons at 313.15 k. J. Chem. Eng. Data 57, 114–119 (2012)

    Article  Google Scholar 

  34. C.P. Smyth, E.W. Engel, Molecular orientation and the partial vapor pressures of binary liquid mixtures. II. Systems containing an alcohol. J. Am. Chem. Soc. 51, 2660–2670 (1929)

    Article  Google Scholar 

  35. P.R. Rao, C. Chiranjivi, C.J. Dasarao, Vapour-liquid equilibria systems: Hexane-hexylalcohol and heptane-hexylalcohol. J. Appl. Chem. 18, 166–168 (1968)

    Article  Google Scholar 

  36. M. Goral, P. Oracz, A. Skrzecz, A. Bok, A. Maczynski, Recommended vapor-liquid equilibrium data binary n-alkanol-n-alkane systems. J. Phys. Chem. Ref. Data 31, 701–748 (2002)

    Article  ADS  Google Scholar 

  37. R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind. Eng. Chem. Res. 32, 1419–1430 (1993)

    Article  Google Scholar 

  38. R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind. Eng. Chem. Res. 34, 3173 (1995)

    Article  Google Scholar 

  39. A. Hernández, M. Cartes, A. Mejía, Measurement and modeling of isobaric vapor-liquid equilibrium and isothermal interfacial tensions of ethanol+ hexane+ 2, 5-dimethylfuran mixture. Fuel 229, 105–115 (2018)

    Article  Google Scholar 

  40. S. Khosharay, F. Varaminian, Modeling interfacial tension of (CH4+ N2)+ H2O and (N2+ Co2)+ H2O systems using linear gradient theory. Korean J. Chem. Eng. 30, 724–732 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

A.H acknowledges the economic support given by the UCSC.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Ariel Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A. Modeling Interfacial Tension of Heptane + Alcohol Mixtures Using Cubic Plus Association Equation of State Plus Simplified Gradient Theory. Int J Thermophys 44, 16 (2023). https://doi.org/10.1007/s10765-022-03126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03126-6

Keywords

Navigation