Skip to main content
Log in

Joule Heating Effects in Thermally Radiative Swirling Flow of Maxwell Fluid Over a Porous Rotating Disk

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The current paper studies the swirling flow caused by rotating disk in an electrically conducting upper-convected Maxwell fluid with the novel thermal diffusion and diffusion-thermo features. The analysis is performed for the porous disk surface which contributes to the uniform suction/blowing effects. The computations are carried out to understand heat and mass transfer in the occurrence of non-linear radiation. Furthermore, the Rosseland approximation model is used to scrutinize the impact of thermal radiations on heat transfer traits of Maxwell fluid. The effects of Joule heating are also captured on fluid thermal behavior. The governing partial differential equations representing the flow motion, energy, and concentration are reduced into ordinary differential equations within the framework of similarity transformations. A well-known bvp4c scheme in Matlab is utilized for the solution of governing non-linear problem. The outcomes divulge that increasing Deborah number creates a decline in radial and angular motion while axial flow decreases in magnitude. Moreover, the strength of thermal radiation parameter and temperature ratio parameter is extremely useful to increase the temperature of the fluid. Further, the increase in Soret number (or decreasing Dufour number) results in an increase in the mass transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(r,\varphi ,z\) :

Cylindrical coordinate system

\(v_{r},v_{\theta },v_{z}\) :

Velocity components

\(\mathbf {V}\) :

Velocity vector

\(\mathbf {\nabla }\) :

Nabla

pT :

Fluid pressure and temperature

C :

Fluid concentration

\(\mathbf {A}_{1}\) :

First Rivlin Ericksen tensor

\(\mathbf {S}\) :

Extra stress tensor

\(\lambda _{1}\) :

Fluid relaxation time

\(\nu ,\mu \) :

Kinematic and dynamic viscosities

\(\mathbf {\nabla V}\) :

Gradient of velocity vector

\(\alpha \) :

Thermal diffusivity

\(B_{0}\) :

Magnetic field strength

W :

Suction/injection velocity

\(T_{\infty },\ \) :

Ambient fluid temperature

\(C_{\infty }\) :

Ambient fluid concentration

\(c_{p}\) :

Specific heat at constant pressure

\(c,\Omega \) :

Stretching and rotation rate constants

\(q_{rad}\) :

Radiative heat flux

\(\sigma ^{*}\) :

Stephan–Boltzmann constant

\(k^{*}\) :

Mean absorption coefficient

Re :

Local Reynolds number

\(\eta \) :

Dimensionless variable

\(\theta \) :

Dimensionless temperature

\(\omega \) :

Rotation parameter

D :

Diffusion coefficient

\(\rho \) :

Fluid density

\(k_{T}\) :

Thermal diffusion ratio

\(T_{m}\) :

Mean fluid temperature

\(c_{s}\) :

Concentration susceptibility

\(\phi \) :

Dimensionless concentration

M :

Magnetic parameter

\(\beta _{1}\) :

Deborah number

Du :

Dufour number

Ec :

Eckert number

Sr :

Soret number

Sc :

Schmidt number

Ws :

Suction/injection parameter

Rd :

Thermal radiation parameter

\(\theta _{w}\) :

Temperature ratio parameter

\(Nu_{r}\) :

Local Nusselt number

\(Sh_{r}\) :

Local Sherwood number

References

  1. T.V. Kármán, Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  Google Scholar 

  2. W.G. Cochran, The flow due to a rotating disk. Proc. Camb. Philos. Soc. 30, 365–375 (1934)

    Article  ADS  Google Scholar 

  3. E.R. Benton, On the flow due to a rotating disk. J. Fluid Mech. 24, 781–800 (1966)

    Article  ADS  Google Scholar 

  4. M. Miclavcic, C.Y. Wang, The flow due to a rough rotating disk. Z. Angew. Math. Phys. 54, 1–12 (2004)

    MathSciNet  Google Scholar 

  5. S.S. Chawla, P.K. Srivastava, A.S. Gupta, Rotationally symmetric flow over a rotating disk. Int. J. Non-Linear Mech. 44, 717–726 (2009)

    Article  ADS  Google Scholar 

  6. M. Turkyilmazoglu, Three dimensional MHD stagnation flow due to a stretchable rotating disk. Int. J. Heat Mass Transf. 55, 6959–6965 (2012)

    Article  Google Scholar 

  7. A. Ahmadpour, K. Sadeghy, Swirling flow of Bingham fluids above a rotating disk: an exact solution. J. Non-Newton. Fluid Mech. 197, 41–47 (2013)

    Article  Google Scholar 

  8. P.T. Griffiths, Flow of a generalised Newtonian fluid due to a rotating disk. J. Non-Newton. Fluid Mech. 221, 9–15 (2015)

    Article  MathSciNet  Google Scholar 

  9. S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing. Int. J. Heat Mass Transf. 103, 1214–1224 (2016)

    Article  Google Scholar 

  10. D.H. Doh, M. Muthtamilselvan, Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. Int. J. Mech. Sci. 130, 350–359 (2017)

    Article  Google Scholar 

  11. P.S. Reddy, P. Sreedevi, A.J. Chamkha, MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. Powder Technol. 307, 46–55 (2017)

    Article  Google Scholar 

  12. M. Khan, J. Ahmed, L. Ahmad, Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Appl. Math. Mech. Engl. Ed. (2018). https://doi.org/10.1007/s10483-018-2368-9

    Article  MATH  Google Scholar 

  13. N.G. Kafoussias, E.M. Williams, Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity. Int. J. Eng. Sci. 33, 1369–1384 (1995)

    Article  Google Scholar 

  14. A. Postelnicu, Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int. J. Heat Mass Transf. 47, 1467–1472 (2004)

    Article  Google Scholar 

  15. E. Osalusi, J. Side, R. Harris, Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer of a steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating. Int. Commun. Heat Mass Transf. 35, 908–915 (2008)

    Article  Google Scholar 

  16. K.A. Maleque, Magnetohydrodynamic convective heat and mass transfer flow due to a rotating disk with thermal diffusion effect. ASME J. Heat Transf. 131, 1–8 (2009)

    Article  Google Scholar 

  17. S.P. Anjali Devi, R. Uma Devi, Soret and Dufour effects on MHD slip flow with thermal radiation over a porous rotating infinite disk. Commun. Nonlinear Sci. Numer. Simulat. 16, 1917–1930 (2011)

    Article  ADS  Google Scholar 

  18. M. Narayana, A.A. Khidir, P. Sibanda, P.V.S.N. Murthy, Soret effect on the natural convection from a vertical plate in a thermally stratified porous medium saturated with non-Newtonian liquid. ASME J. Heat Transf. 135, 032501–10 (2013)

    Article  Google Scholar 

  19. C.R. Reddy, P.V.S.N. Murthy, A.J. Chamkha, A.M. Rashad, Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transf. 64, 384–392 (2013)

    Article  Google Scholar 

  20. C.-J. Huang, Influence of non-Darcy and MHD on free convection of non-Newtonian fluids over a vertical permeable plate in a porous medium with Soret/Dufour effects and thermal radiation. Int. J. Therm. Sci. 130, 256–263 (2018)

    Article  Google Scholar 

  21. A.F. Al-Mudhaf, A.M. Rashad, S.E. Ahmed, A.J. Chamkha, S.M. EL-Kabeir, Soret and Dufour effects on unsteady double diffusive natural convection in porous trapezoidal enclosures. Int. J. Mech. Sci. 140, 172–178 (2018)

    Article  Google Scholar 

  22. A. Raptis, Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass Transf. 25, 289–295 (1998)

    Article  Google Scholar 

  23. A.Y. Bakier, Thermal radiation effect on mixed convection from vertical surface in saturated porous media. Int. Commun. Heat Mass Transf. 28, 119–126 (2001)

    Article  Google Scholar 

  24. A.J. Chamkha, Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer. Heat Transf. Part A Appl. 39, 511–530 (2001)

    Article  ADS  Google Scholar 

  25. R. Cortell, A numerical tackling on Sakiadis flow with thermal radiation. Chin. Phys. Lett. 25, 1340–1342 (2008)

    Article  Google Scholar 

  26. A.J. Chamkha, R.A. Mohamed, S.E. Ahmed, Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. Meccanica 46, 399–411 (2011)

    Article  MathSciNet  Google Scholar 

  27. S.M. Abo-Dahab, R.A. Mohamed, Unsteady flow of radiating and chemically reacting MHD micropolar fluid in slip-flow regime with heat generation. Int. J. Thermophys. 34, 2183–2208 (2013)

    Article  ADS  Google Scholar 

  28. M. Naveed, Z. Abbas, M. Sajid, Nonlinear radiative heat transfer in Blasius and Sakiadis flows over a curved surface. Int. J. Thermophys. 38, 14 (2017)

    Article  ADS  Google Scholar 

  29. Q. Hussain, N. Alvi, T. Latif, S. Asghar, Radiative heat transfer in Powell-Eyring nanofluid with peristalsis. Int. J. Thermophys. 40, 46 (2019)

    Article  ADS  Google Scholar 

  30. F. Labropulu, J.M. Dorrepaal, O.P. Chandna, Oblique flow impinging on a wall with suction or blowing. Acta Mech. 115, 15–25 (1996)

    Article  Google Scholar 

  31. A.J. Chamkha, MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects. Appl. Math. Model. 21, 603–609 (1997)

    Article  Google Scholar 

  32. A.J. Chamkha, A.-R.A. Khaled, Hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media. Int. J. Numer. Methods Heat Fluid Flow 10, 94–115 (2000)

    Article  Google Scholar 

  33. R.S.R. Gorla, A.J. Chamkha, Natural convective boundary layer flow over a nonisothermal vertical plate embedded in a porous medium saturated with a nanofluid. Nanoscale Microscale Thermophys. Eng. 15, 81–94 (2011)

    Article  ADS  Google Scholar 

  34. W.A. Khan, R.S.R. Gorla, Mixed convection of water at 4\(^\circ \)C along a wedge with variable surface temperature in a porous medium. Int. J. Thermophys. 32, 2079–2091 (2011)

    Article  ADS  Google Scholar 

  35. A. Tayari, A.B. Brahim, M. Magherbi, Second law analysis in mixed convection through an inclined porous channel. Int. J. Thermophys. 36, 2881–2896 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Khan, M. & Ahmad, L. Joule Heating Effects in Thermally Radiative Swirling Flow of Maxwell Fluid Over a Porous Rotating Disk. Int J Thermophys 40, 106 (2019). https://doi.org/10.1007/s10765-019-2561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2561-x

Keywords

Navigation