Skip to main content
Log in

Unsteady Flow of Radiating and Chemically Reacting MHD Micropolar Fluid in Slip-Flow Regime with Heat Generation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An analytical study of the problem of unsteady free convection with thermal radiation and heat generation on MHD micropolar fluid flow through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime has been presented. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The homogeneous chemical reaction of first order is accounted for in the mass diffusion equation. A uniform magnetic field acts perpendicular on the porous surface absorbing micropolar fluid with a suction velocity varying with time. A perturbation technique is applied to obtain the expressions for the velocity, microrotation, temperature, and concentration distributions. Expressions for the skin-friction, Nusselt number, and Sherwood number are also obtained. The results are discussed graphically for different values of the parameters entered into the equations of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic induction (\(T\))

\(C^{*}\) :

Species concentration (\(\mathrm {mol}\,{\cdot }\,\mathrm {m}^{-3}\))

\(C_{\mathrm{w }}^{*}\) :

Surface concentration (\(\mathrm {mol}\,{\cdot }\,\mathrm{m}^{-3}\))

\(C_{\infty }^{*}\) :

Species concentration far from the surface (\(\mathrm {mol}\,{\cdot }\,\mathrm{m}^{-3}\))

\(C_\mathrm{f }\) :

Skin-friction coefficient

\(C_\mathrm{m }\) :

Couple stress coefficient

\(c_{p}\) :

Specific heat at constant pressure (\(\mathrm J \,{\cdot }\, \mathrm{kg}^{-1}\,{\cdot }\, \mathrm K ^{-1}\))

\(D^{*}\) :

Chemical molecular diffusivity (\(\mathrm m ^{2}\,{\cdot }\,\mathrm s ^{-1}\))

\(Gc\) :

Solutal Grashof number

\(Gr\) :

Grashof number

\(g\) :

Accelaration due to gravity (\(\mathrm m \,{\cdot }\,\mathrm s ^{-2}\))

\(H\) :

Dimensionless heat generation/absorption coefficient

\(j^{*}\) :

Microinertia per unit mass (\(\mathrm m ^{2}\))

\(K{^{*}}\) :

Permeability of the porous media (\(\mathrm m ^{2}\))

\(K_{1}^{*}\) :

Mean absorption coefficient (\(\mathrm m ^{-1}\))

\(K\) :

Diemnsionless permeability

\(k\) :

Thermal conductivity of the fluid (\(\mathrm W \,{\cdot }\,\mathrm m ^{-1}\,{\cdot }\,\mathrm K ^{-1}\))

\(M\) :

Local magnetic field parameter

\(n\) :

Parameter related to microgyration vector and shear stress

\(N\) :

Model parameter

\(Nu\) :

Nusselt parameter

\(P^{*}\) :

Pressure (\(\mathrm{kg}\,{\cdot }\,\mathrm m ^{-1}\,{\cdot }\,\mathrm s ^{-2}\))

\(Pr\) :

Fluid Prandtl number

\(Q_{0}\) :

Heat generation coefficient (\(\mathrm W \,{\cdot }\,\mathrm m ^{-3}\,{\cdot }\,\mathrm K ^{-1}\))

\(q_\mathrm{r }^{*}\) :

Radiative heat flux (\(\mathrm W \,{\cdot }\,\mathrm m ^{-2}\))

\(R^{*}\) :

Reaction rate constant (J)

\(R\) :

Radiation parameter

\(Re\) :

Reynolds number

\(Sc\) :

Generalized Schmidt number

\(Sh\) :

Sherwood number

\(t^{*}\) :

Time (s)

\(t\) :

Dimensionless time

\(T^{*}\) :

Temperature in the boundary layer (K)

\(T_{\infty }^{*}\) :

Temperature far away from the plate (K)

\(T_\mathrm w ^{*}\) :

Temperature at the wall (K)

\(u\) :

Dimensionless velocity

\(u^{*}\) and \(v^{*}\) :

Velocities along and perpendicular to the plate (\(\mathrm m \,{\cdot }\,\mathrm s ^{-1}\))

\(U_{0}\) :

Plate velocity in the direction of flow (\(\mathrm m \,{\cdot }\,\mathrm{s }^{-1}\))

\(U_{\infty }^{*}\) :

Free stream velocity (\(\mathrm m \,{\cdot }\,\mathrm s ^{-1}\))

\(K_n\) :

Knudsen number

\(h\) :

Rarefaction parameter

\(\varrho \) :

Characteristic dimension of flow

\(V_{0}\) :

Scale of suction velocity

\(x^{*}\) and \(y^{*}\) :

Distances along and perpendicular to the plate, respectively (m)

\(y\) :

Dimensionless spanwise coordiante normal to the plate

\(\alpha \) :

Fluid thermal diffusivity (\(\mathrm m ^{2}\,{\cdot }\,\mathrm s ^{-1}\))

\(\beta \) :

Ratio of vortex viscosity and dynamic viscosity

\(\beta _{c}\) :

Volumetric coefficient of thermal expansion (\(\mathrm K ^{-1}\))

\(\beta _\mathrm{f}\) :

Volumetric coefficient of expansion with concentration (\(\mathrm K ^{-1}\))

\(\gamma \) :

Spin-gradient velocity (\(\mathrm{kg}\,{\cdot }\,\mathrm m \,{\cdot }\,\mathrm s ^{-1}\))

\(\delta \) :

Scalar constant

\(\epsilon \) :

Scalar constant

\(\theta \) :

Dimensionless temperature

\(K_\mathrm{c}\) :

Chemical reaction parameter

\(\eta \) :

Scalar constant

\(\mu \) :

Fluid dynamic viscosity (\(\mathrm{kg}\,{\cdot }\,\mathrm m ^{-1}\,{\cdot }\,\mathrm s ^{-1}\))

\(\nu \) :

Fluid kinematic rotational viscosity (\(\mathrm m ^{2}\,{\cdot }\,\mathrm s ^{-1}\))

\(\nu _\mathrm{r}\) :

Kinematic rotational viscosity (\(\mathrm m ^{2}\,{\cdot }\,\mathrm s ^{-1}\))

\(\rho \) :

Fluid density (\(\mathrm{kg}\,{\cdot }\,\mathrm m ^{-3}\))

\(\sigma \) :

Electrical conductivity of the fluid (\(\mathrm S \,{\cdot }\,\mathrm m ^{-1}\))

\(\sigma ^{*}\) :

Stefan–Boltzmann constant (\(\mathrm W \,{\cdot }\,\mathrm m ^{-2}\,{\cdot }\,\mathrm K ^{-4}\))

\(\omega \) :

Microrotation vector (\(\mathrm m \,{\cdot }\,\mathrm s ^{-1}\))

\(\varGamma \) :

Coefficient of gryo-viscosity (or vortex viscosity) (\(\mathrm{kg}\,{\cdot }\,\mathrm m ^{-1}\,{\cdot }\,\mathrm s ^{-1}\))

\(L^{*}\) :

Mean free path

\(L_{1}^{*}\) :

Slip strength or slip coefficient

\(m_{1}\) :

Maxwell’s reflection coefficient

\(A\) :

Suction parameter

References

  1. G. Lukaszewicz, Micropolar Fluids: Theory and Applications (Birkhäuser, Boston, MA, 1966)

    Google Scholar 

  2. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Google Scholar 

  3. C. Eringen, J. Math. Mech. 16, 1 (1966)

    Google Scholar 

  4. C. Eringen, J. Math. Anal. Appl. 38, 480 (1972)

    Google Scholar 

  5. K.A. Helmy, ZAMM 78, 255 (1998)

  6. Y.J. Kim, Acta Mech. 148, 106 (2001)

    Article  Google Scholar 

  7. F.S. Ibrahim, I.A. Hassanien, A.A. Baker, Canad. J. Phys. 82, 775 (2004)

    Article  ADS  Google Scholar 

  8. P.S. Hiremath, P.M. Patil, Acta Mech. 98, 143 (1993)

    Article  MATH  Google Scholar 

  9. Y.J. Kim, Int. J. Heat Mass Transf. 44, 2791 (2001)

    Article  MATH  Google Scholar 

  10. Y.J. Kim, Acta Mech. 156, 17 (2004)

    Google Scholar 

  11. R. Muthucumaraswamy, P. Ganesan, J. Appl. Mech. Tech. Phys. 42, 665 (2001)

  12. A.J. Chamkha, Int. Commun. Heat Mass Transf. 30, 413 (2003)

  13. R. Muthucumaraswamy, P. Ganesan, Forschung Ingenieurwesen 66, 17 (2000)

    Article  Google Scholar 

  14. R. Muthucumaraswamy, P. Ganesan, Acta Mech. 147, 1 (2001)

    Article  Google Scholar 

  15. R. Muthucumaraswamy, P. Ganesan, Forschung Ingenieurwesen 67, 129 (2002)

    Article  Google Scholar 

  16. A. Raptis, C. Perdikis, Int. J. Non-Linear Mech. 41, 527 (2006)

    Article  ADS  MATH  Google Scholar 

  17. M.A. Seddeek, A.A. Darwish, M.S. Abdelmeguid, Commun. Nonlinear Sci. Numer. Simulat. 12, 195 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. F.S. Ibrahim, A.M. Elaiw, A.A. Bakr, Commun. Nonlinear Sci. Numer. Simulat. 13, 1056 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. A. Mohamed, Ibrahim. A. Abbas, S. M. Abo-Dahab, Commun. Nonlinear Sci. Numer. Simulat. 14, 1385 (2009)

  20. P.K. Sharma, R.C. Chaudhary, Emir. J. Eng. Res. 8, 33 (2003)

    Google Scholar 

  21. P. K. Sharma, Mathematicas XIII, 51 (2005)

  22. H. Kumar, S.S. Tak, Acta Cienc. Indica 33, 1043 (2007)

    MATH  Google Scholar 

  23. K. Khandelwal, A. Gupta, N.C. Poonam, Ganita 54, 203 (2003)

    Google Scholar 

  24. R.C. Chaudhary, A.K. Jha, Appl. Math. Mech. 29, 1179 (2008)

    Article  MATH  Google Scholar 

  25. M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz, S.E. Ahmed, Int. J. Appl. Math. Mech 3, 99 (2007)

    Google Scholar 

  26. R.S.R. Gorla, A.A. Mohamadien, M.A. Mansour, I.A. Hassanien, Numer. Heat Transfer A28, 253 (1995)

    Article  ADS  Google Scholar 

  27. E.M. Abo-Eldahab, M.A. El-Aziz, Appl. Math. Comput. 162, 881 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.M. Rahman, M.A. Sattar, ASME J. H. Transfer 128, 142 (2006)

    Article  Google Scholar 

  29. M.M. Rahman, I.A. Eltayb, S.M.M. Rahman, Therm. Sci. 13, 23 (2009)

    Article  Google Scholar 

  30. V.M. Soundalgekar, ASME J. Heat Transfer 99, 499 (1977)

    Article  Google Scholar 

  31. E.M. Abo-Eldahab, A.F. Ghonaim, Appl. Maths. & Comp. 169, 500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.A. Rahman, T. Sultan, Nonlinear Analysis Modeling and Control 13, 71 (2008)

    MATH  Google Scholar 

  33. R.A. Mohamed, S.M. Abo-Dahab, IJTS 48, 1800 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.  M. Abo-Dahab.

Appendix

Appendix

The exponential indices in Eqs. 3441 are defined by

$$\begin{aligned} h_{1}&= \frac{1}{2(1+\beta )}\left[ 1+\sqrt{1+4N(1+\beta )}\right] , \\ \ h_{2}&= \frac{1}{2(1+\beta )}\left[ 1+\sqrt{1+4(\delta +N)(1+\beta )} \right] , \\ h_{3}&= \frac{\mathrm{3Pr}}{2(3+4R)}\left[ 1+\sqrt{1+\frac{4(\delta -H)(3+4R)}{\mathrm{3Pr}}} \right] , \\ \ h_{4}&= \frac{Sc}{2}\left[ 1+\sqrt{1+\frac{4(\delta +K_{c})}{Sc}}\right] , \\ h_{5}&= \frac{\eta }{2}\left[ 1+\sqrt{1+\frac{4\delta }{\eta }}\right] , \\ h_{6}&= \frac{Sc}{2}\left[ 1+\sqrt{1+\frac{4K_{c}}{Sc}}\right] , \\ R_{1}&= \frac{\mathrm{3Pr}}{2(3+4R)}\left[ 1+\sqrt{1-\frac{4H(3+4R)}{\mathrm{3Pr}}}\right] , \end{aligned}$$

and the coefficients are given by

$$\begin{aligned} Z_{1}&= \frac{3A Pr R_{1}}{(3+4R)R_{1}^{2}-3 Pr R_{1}-3(\delta -H) Pr}, \\ a_{1}&= \frac{h_{1}}{1+hh_{1}}, \\ a_{2}&= \frac{Gr}{(1+\beta )R_{1}^{2}-R_{1}-N}, \\ a_{3}&= \frac{Gc}{(1+\beta )h_{6}^{2}-h_{6}-N}, \\ a_{4}&= \frac{2\beta \eta b_{1}}{(1+\beta )\eta ^{2}-\eta -N}=X_{1}b_{1}, \\ b_{1}&= \frac{na_{1}}{1+nX_{1}\left( a_{1}(1+\eta h)-\eta \right) }\left( a_{2}(1+R_{1}h)+a_{3}(1+hh_{6})-1\right. \\&\left. -\frac{1}{a_{1}}(a_{2}R_{1}+a_{3}h_{6}) \right) , \\ b_{2}&= \frac{1}{1\!+\!nK_{1}X_{2}}\left[ n(h_{2}t_{4}t_{5}\!-\!h_{2}t_{4}t_{7}\!+\!h_{3}d_{1}d_{4}h_{4}\!-\!d_{12}h_{6}\!-\!d_{11}R_{1}\!+\!h_{1}d_{7}\!-\!d_{13}\eta )\right. \\&\left. + \frac{Ab_{1}\eta }{\delta }\right] , \\ b_{4}&= \frac{A Sc h_{6}}{h_{6}^{2}-Sch_{6}-(\delta +K_{c})Sc}, \\ b_{6}&= \frac{1}{1+hh_{1}}\left[ a_{2}(1+R_{1}h)+a_{3}(1+hh_{6})-a_{4}(1+ \eta h)-1\right] , \\ d_{1}&= \frac{Gr(Z_{1}-1)}{(1+\beta )h_{3}^{2}-h_{3}-(\delta +N)}, \\ d_{2}&= \frac{AR_{1}a_{2}}{(1+\beta )R_{1}^{2}-R_{1}-(\delta +N)}, \\ d_{3}&= \frac{Grb_{4}}{(1+\beta )h_{6}^{2}-h_{6}-(\delta +N)}, \\ d_{4}&= \frac{Gc(b_{4}-1)}{(1+\beta )h_{4}^{2}-h_{4}-(\delta +N)}, \\ d_{5}&= \frac{2\beta b_{2}h_{5}}{(1+\beta )h_{5}^{2}-h_{5}-(\delta +N)} =X_{2}b_{2}, \\ d_{6}&= \frac{2\beta \eta ^{2}Ab_{1}}{\delta \left[ (1+\beta )\eta ^{2}-\eta -(\delta +N)\right] }, \\ d_{7}&= \frac{Ah_{1}b_{6}}{(1+\beta )h_{1}^{2}-h_{1}-(\delta +N)}, \\ d_{8}&= \frac{GrZ_{1}}{(1+\beta )R_{1}^{2}-R_{1}-(\delta +N)}, \\ d_{9}&= \frac{Ah_{6}a_{3}}{(1+\beta )h_{6}^{2}-h_{6}-(\delta +N)}, \\ d_{10}&= \frac{A\eta a_{4}}{(1+\beta )\eta ^{2}-\eta -(\delta +N)}, \\ d_{11}&= d_{2}+d_{8},\quad d_{12}=d_{3}+d_{9}, \quad d_{13}=d_{6}-d_{10},\quad d_{14}=t_{4}(t_{5}-t_{6}), \\ t_{4}&= \frac{1}{1+hh_{2}}, \quad t_{5}=(hR_{1}+1)d_{11}-(hh_{3}+1)d_{1}+(hh_{6}+1)d_{12}, \\ t_{6}&= (hh_{4}+1)d_{4}+(hh_{5}+1)d_{5}+(1+hh_{1})d_{7}-(h\eta +1)d_{13}+1, \\ t_{7}&= (hh_{4}+1)d_{4}+(hh_{1}+1)d_{7}-(h\eta +1)d_{13}+1, \\ K_{1}&= h_{2}t_{4}(hh_{5}+1)-h_{5}, \\ X_{1}&= \frac{2\beta \eta }{(1+\beta )\eta ^{2}-\eta -(\delta +N)}, \quad X_{2}=\frac{2\beta h_{5}}{(1+\beta )h_{5}^{2}-h_{5}-(\delta +N)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abo-Dahab, S.M., Mohamed, R.A. Unsteady Flow of Radiating and Chemically Reacting MHD Micropolar Fluid in Slip-Flow Regime with Heat Generation. Int J Thermophys 34, 2183–2208 (2013). https://doi.org/10.1007/s10765-013-1528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1528-6

Keywords

Navigation