Skip to main content

Advertisement

Log in

Polylogarithmic Representation of Radiative and Thermodynamic Properties of Thermal Radiation in a Given Spectral Range: II. Real-Body Radiation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

There are several classes of materials and space objects for which the frequency dependence of the spectral emissivity is represented as a power series. Therefore, the study of the properties of thermal radiation for these real bodies is an important task for both fundamental science and industrial applications. The general analytical expressions for the thermal radiative and thermodynamic functions of a real body are obtained in a finite range of frequencies at different temperatures. The Stefan–Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and total emissivity are expressed in terms of the polylogarithm functions. The obtained general expressions for the thermal radiative and thermodynamic functions are applied for the study of thermal radiation of liquid and solid zirconium carbide. These functions are calculated using experimental data for the frequency dependence of the normal spectral emissivity in the visible and near-infrared range at the melting (freezing) point. The gaps between the thermal radiative and thermodynamic functions of liquid and solid zirconium carbide are observed. The general analytical expressions obtained can easily be presented in the wavenumber domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Michalski, K. Eckersdorf, J. Kucharski, J. McGhee, Temperature Measurements (Wiley, Chichester, 2001)

    Book  Google Scholar 

  2. E.C. Magison, Temperature Measurements in Industry (Research Triangle Park, ISA, 1990)

    Google Scholar 

  3. H. Fukuyama, Y. Waseda (eds.), High-temperature measurements of materials, Advances in Materials Research (Springer, Berlin, 2008), p. 204

  4. T. Riethof, B. Acchione, E. Branyan, High-temperature spectral emissivity studies on some refractory metals and carbides, Temperature, Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1962)

    Google Scholar 

  5. S. Meng, H. Chen, J. Hu, Z. Wang, Mater. Des. 32, 377 (2011)

    Article  Google Scholar 

  6. M. Bober, H.U. Karow, K. Muller, High Temp. High Press. 12, 161 (1980)

    Google Scholar 

  7. D.D. Soerensen, S. Clausen, J.B. Mercer, L.J. Pedersen, Comput. Electron. Agric. 109, 52 (2014)

    Article  Google Scholar 

  8. R. Ke, Y. Zhang, Y. Zhou, Optik. Int. J. Light Electron Opt. 125, 6991 (2014)

    Article  Google Scholar 

  9. A. Adibekyan, C. Monte, M. Kehrt, B. Gutschwager, J. Hollandt, Int. J. Thermophys. 36, 283 (2015)

    Article  ADS  Google Scholar 

  10. F. Tairan, T. Peng, D. Minghao, Meas. Sci. Technol. 26, 015003 (2015)

    Article  Google Scholar 

  11. K. Nakazawa, A. Ohnishi, Int. J. Thermophys. 31, 2010 (2010)

    Article  ADS  Google Scholar 

  12. A. Barducci, D. Guzzi, P. Marcoionni, I. Pippi, IEEE Trans. Geosci. Remote Sens. 42, 1521 (2004)

    Article  ADS  Google Scholar 

  13. T. Matsumoto, A. Cezairliyan, D. Basak, Int. J. Thermophys. 20, 943 (1999)

    Article  Google Scholar 

  14. C. Cagran, G. Pottlacher, Int. J. Thermophys. 28, 697 (2007)

    Article  ADS  Google Scholar 

  15. S. Krishnan, G.P. Hansen, R.H. Hauge, J.L. Margrave, High Temp. Sci. 29, 17 (1990)

    Google Scholar 

  16. S. Krishnan, P.C. Nordine, J. Appl. Phys. 80, 1735 (1996)

    Article  ADS  Google Scholar 

  17. Y.S. Touloukian, D.P. DeWitt, Thermal radiative properties: metallic elements and alloys, Thermophysical Properties of Matter, vol. 7 (IFI/Plenum, New York, Washington, 1970)

    Google Scholar 

  18. D.J. Watmough, R. Oliver, Nature 219, 622 (1968)

    Article  ADS  Google Scholar 

  19. C.D. Wen, I. Mudawar, Int. J. Heat Mass Transf. 47, 3591 (2004)

    Article  Google Scholar 

  20. B.K. Tsai, R.L. Shemaker, D.P. DeWitt, B.A. Cowans, Z. Dardas, W.N. Delgass, G.J. Dail, Int. J. Thermophys. 11, 269 (1990)

    Article  ADS  Google Scholar 

  21. M.F. Hopkins, SPIE Int. Soc. Opt. Eng. 2599, 294 (1996)

    ADS  Google Scholar 

  22. M.A. Khan, C.D. Allemand, T.W. Eager, Rev. Sci. Instrum. 62, 403 (1991)

    Article  ADS  Google Scholar 

  23. Th Duvaut, D. Georgeault, J.L. Beaudoin, Infrared Phys. Technol. 36, 1089 (1995)

    Article  ADS  Google Scholar 

  24. J.L. Gardner, T.P. Jones, M.R. Davies, High Temp. High Press. 13, 459 (1981)

    Google Scholar 

  25. J.L. Gardner, High Temp. High Press. 12, 699 (1980)

    Google Scholar 

  26. M. Hoch, High Temp. High Press. 24, 607 (1992)

    Google Scholar 

  27. M. Hoch, Rev. Sci. Instrum. 63, 2274 (1992)

    Article  ADS  Google Scholar 

  28. G.R. Gathers, Int. J. Thermophys. 13, 361 (1992)

    Article  ADS  Google Scholar 

  29. G.R. Gathers, Int. J. Thermophys. 13, 539 (1992)

    Article  ADS  Google Scholar 

  30. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972). p

    Google Scholar 

  31. D.K. Edwards, I. Catton, Advances in the thermophysical properties at extreme temperatures and pressures. In: Proceedings of third symposium on thermophysical properties 1965, p. 189

  32. A.I. Fisenko, S.N. Ivashov, J. Phys. D 32, 2882 (1999)

    Article  ADS  Google Scholar 

  33. S.N. Ivashov, A.I. Fisenko, J. Eng. Phys. 57, 838 (1990)

    Article  Google Scholar 

  34. V.A. Ershov, A.I. Fisenko, Combust. Explos. Shock Waves 28, 159 (1992)

    Article  Google Scholar 

  35. Z.M. Zhang, X.J. Wang, J. Thermophys. Heat Transf. 24, 222 (2010)

    Article  Google Scholar 

  36. S.N. Ivashov, A.I. Fisenko, Int. J. Thermophys. 30, 1524 (2009)

    Article  ADS  Google Scholar 

  37. A.I. Fisenko, V. Lemberg, Int. J. Thermophys. 33, 513 (2012)

    Article  ADS  Google Scholar 

  38. A.I. Fisenko, V. Lemberg, Int. J. Thermophys. 34, 486 (2013)

    Article  ADS  Google Scholar 

  39. A.I. Fisenko, V. Lemberg, Int. J. Thermophys. 36, 1627 (2015)

    Article  ADS  Google Scholar 

  40. D. Manara, F. De Bruycker, K. Boboridis, O. Tougait, R. Eloirdy, M. Malki, J. Nucl. Mater. 426, 126 (2012)

    Article  ADS  Google Scholar 

  41. D. Manara, H.F. Jackson, C. Perinetti-Casoni, K. Boboridis, M.J. Welland, L. Luzzi, P.M. Ossi, W.E. Lee, J. Eur. Ceram. Soc. 33, 1349 (2013)

    Article  Google Scholar 

  42. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 223 (2003)

    Article  Google Scholar 

  43. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)

    Article  Google Scholar 

  44. W.T. Reach, E. Dwek, D.J. Fixsen, T. Hewagama, J.C. Mather, R.A. Shafer, A.J. Banday, C.L. Bennett, E.S. Cheng, R.E. Eplee Jr, D. Leisawitz, P.M. Lubin, S.M. Read, L.P. Rosen, F.G.D. Shuman, G.F. Smoot, T.J. Sodroski, E.L. Wright, AP J. 451, 188 (1995)

    Article  ADS  Google Scholar 

  45. L. Spinoglio, M.A. Malkan, H.A. Smith, E. González-Alfonso, J. Fischer, AP J. 623, 123 (2005)

    Article  ADS  Google Scholar 

  46. A.I. Fisenko, V. Lemberg, Res. Astron. Astrophys. 15, 939 (2015)

    Article  ADS  Google Scholar 

  47. L.D. Landau, E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics, vol. 5 (Pergamon Press, Oxford, New York, 1980)

    Google Scholar 

  48. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1965)

    Google Scholar 

  49. A.I. Fisenko, V. Lemberg, Astrophys. Space Sci. 352, 221 (2014)

    Article  ADS  Google Scholar 

  50. D.S. Birney, G. Gonzalez, D. Oepser, Observational Astronomy, 2nd edn. (Cambridge University Press, Cambridge, UK, 2006)

    Google Scholar 

  51. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, Interface 16, 30 (2007)

    Google Scholar 

  52. P.T.B. Shaffer, Engineering properties of carbides, Engineered Materials Handbook, vol. 4, Ceramics and Glass (ASM International, Metals Park, Ohio, 1991), p. 1217

  53. W. Doonyapong, J. Nucl. Mater. 396, 149 (2010)

    Article  Google Scholar 

  54. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, J. Eur. Ceram. Soc. 22, 2757 (2002)

    Article  Google Scholar 

  55. E. Sani, L. Mercatelli, F. Francini, J.L. Sans, D. Sciti, Scripta Mater. 65, 75 (2011)

    Article  Google Scholar 

  56. T.E. Zapadaeva, V.A. Petrov, V.V. Sokolov, High Temp. 18, 76 (1980)

    Google Scholar 

  57. P.T.B. Shaffer, J. Am. Ceram. Soc. 46, 177 (1963)

    Article  Google Scholar 

Download references

Acknowledgments

The authors cordially thank Professor N.P. Malomuzh for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy I. Fisenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisenko, A.I., Lemberg, V. Polylogarithmic Representation of Radiative and Thermodynamic Properties of Thermal Radiation in a Given Spectral Range: II. Real-Body Radiation. Int J Thermophys 36, 2705–2719 (2015). https://doi.org/10.1007/s10765-015-1982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1982-4

Keywords

Navigation