Skip to main content
Log in

Polylogarithmic Representation of Radiative and Thermodynamic Properties of Thermal Radiation in a Given Spectral Range: I. Blackbody Radiation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermodynamics of blackbody radiation has been constructed for the entire range of the spectrum. However, in practical applications, thermodynamic functions must be calculated within a finite range of frequencies. The analytical expressions for the radiative and thermodynamic properties of blackbody radiation over an arbitrary spectral range of the electromagnetic spectrum are obtained. The Wien displacement law, Stefan–Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, and pressure are expressed in terms of the polylogarithm functions. These expressions are important when we build a theoretical model of radiative heat transfer, for example. The thermodynamic functions of blackbody radiation are calculated for various ranges of the spectrum at different temperatures. As an example of practical applications, thermodynamics of the cosmic microwave background radiation measured by the COBE FIRAS instrument is constructed. The expressions obtained for the radiative and thermodynamic functions of blackbody radiation can easily be presented in wavelength and wavenumber domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Watmough, R. Oliver, Nature 219, 622 (1968)

    Article  ADS  Google Scholar 

  2. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, Astrophys. J. 473, 576 (1996)

    Article  ADS  Google Scholar 

  3. D. Manara, F. De Bruycker, K. Boboridis, O. Tougait, R. Eloirdi, M. Malki, J. Nucl. Mater. 426, 126 (2012)

    Article  ADS  Google Scholar 

  4. T.E. Michels, in Planck function and integrals; methods of computation. NASA Technical Note, NASA TN D-4446. (National Aeronautics and Space Administration, Washington, DC, 1968), p. 1

  5. S.A. Twomey, Infrared Phys. 3, 9 (1963)

    Article  ADS  Google Scholar 

  6. M.K. Frehafer, C.L. Snow, J. Franklin Inst. 200, 387 (1925)

    Article  MATH  Google Scholar 

  7. M. Czerny, A. Walther, Tables of the Fractional Functions for the Planck Radiation Law (Springer, Berlin, 1961), p. 232

    Google Scholar 

  8. Z. Miduno, Proc. Phys. Math. Soc. Jpn. 20, 951 (1938)

    Google Scholar 

  9. A.N. Lowan, Miscellaneous Physical Tables. Planck’s Radiation Functions and Electronic Functions (National Bureau of Standards, New York, 1941), p. 61

    Google Scholar 

  10. G.T. Stevenson, Black-Body Radiation Functions (US Naval Ordnance Test Station China Lake, CA, 1963), p. 125

    Google Scholar 

  11. P. Moon, J. Opt. Soc. Am. 38, 291 (1948)

    Article  ADS  Google Scholar 

  12. M. Pivovonsky, M.R. Nagel, Tables of Blackbody Radiation Functions: MacMillan Monographs in Applied Optics (Literary Licensing, LLC, Whitefish, 2013), p. 522

    Google Scholar 

  13. P. Moon, D.E. Spencer, J. Appl. Phys. 17, 506 (1946)

    Article  ADS  Google Scholar 

  14. M. Hatch, Appl. Opt. 12, 617 (1973)

    Article  ADS  Google Scholar 

  15. W.K. Jr Widger, M.P. Woodall, Bull. Am. Meteorol. Soc. 57, 1217 (1976)

    Article  ADS  Google Scholar 

  16. S.M. Stewart, J. Quant. Spectrosc. Radiat. Transf. 113, 232 (2012)

    Article  ADS  Google Scholar 

  17. K. Heetae, Y. Suk Joo, Y. Soon Jae, J. Korean Phys. Soc. 56, 554 (2010)

    Article  Google Scholar 

  18. K. Heetae, S.C. Lim, Y.H. Lee, Phys. Lett. A. 375, 2661 (2011)

    Article  ADS  Google Scholar 

  19. L.D. Landau, E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics, vol. 5 (Pergamon Press, Oxford, NY, 1980)

    Google Scholar 

  20. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1972), p. 1046

    MATH  Google Scholar 

  21. A.A. Gershun, Uspekhi Fizicheskikh Nauk 46, 388 (1952)

    Article  Google Scholar 

  22. A.I. Fisenko, S.N. Ivashov, J. Phys. D Appl. Phys. 32, 2882 (1999)

    Article  ADS  Google Scholar 

  23. S.N. Ivashov, A.I. Fisenko, J. Eng. Phys. 57, 838 (1990)

    Article  MATH  Google Scholar 

  24. V.A. Ershov, A.I. Fisenko, Combust. Explos. Shock Waves 28, 159 (1992)

    Article  MATH  Google Scholar 

  25. S.N. Ivashov, A.I. Fisenko, Int. J. Thermophys. 30, 1524 (2009)

    Article  ADS  MATH  Google Scholar 

  26. A.I. Fisenko, V. Lemberg, Int. J. Thermophys. 33, 513 (2012)

    Article  ADS  MATH  Google Scholar 

  27. A.I. Fisenko, V. Lemberg, Int. J. Thermophys. 34, 486 (2013)

    Article  ADS  Google Scholar 

  28. J.C. Mather, E.S. Cheng, R.E. Eplee Jr, R.B. Isaacman, S.S. Meyer, R.A. Shafer, R. Weiss, E.L. Wright, C.L. Bennett, N.W. Boggess, E. Dwek, S. Gulkis, M.G. Hauser, M. Janssen, T. Kelsall, P.M. Lubin, S.H. Moseley Jr, T.L. Murdock, R.F. Silverberg, G.F. Smoot, D.T. Wilkinson, Astrophys. J. 354, L37 (1990)

    Article  ADS  Google Scholar 

  29. A.I. Fisenko, V. Lemberg, Astrophys. Space. Sci. 352, 221 (2014)

    Article  ADS  Google Scholar 

  30. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)

    Article  Google Scholar 

  31. A.I. Fisenko, V. Lemberg, Res. Astron. Astrophys. 15, 939 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors cordially thank Professor N.P. Malomuzh for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy I. Fisenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisenko, A.I., Lemberg, V. Polylogarithmic Representation of Radiative and Thermodynamic Properties of Thermal Radiation in a Given Spectral Range: I. Blackbody Radiation. Int J Thermophys 36, 1627–1639 (2015). https://doi.org/10.1007/s10765-015-1921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1921-4

Keywords

Navigation