Skip to main content
Log in

Characterization of Silicon Wafers with Combined Photocarrier Radiometry and Free Carrier Absorption

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A combined photocarrier radiometry (PCR) and free carrier absorption (FCA) technique was employed to evaluate the electronic transport properties (carrier lifetime \(\tau \), diffusion coefficient \(D\), and the front surface recombination velocity \(S_{1})\) of silicon wafers and to monitor the ion implantation and thermal annealing processes in the semiconductor manufacturing. For non-implanted silicon wafers, the experimental results showed that the accuracy of the simultaneous determination of the transport properties was greatly improved by fitting simultaneously the measured PCR and FCA signals to the theoretical models via a multi-parameter fitting procedure. For As\(^+\) ion implanted and thermal annealed silicon wafers, the results showed that both PCR and FCA amplitudes increased monotonically with the increasing implantation dose (\(5\times 10^{11}\) cm\(^{-2 }\) to \(1\times 10^{16 }\) cm\(^{-2})\), the decreasing implantation energy (20 keV to 140 keV), and the increasing annealing temperature (500 \(^{\circ }\)C to 1000 \(^{\circ }\)C), respectively. To explain the dependences of the PCR signals on the implantation and annealing parameters, a multi-wavelength PCR technique was proposed to extract the electronic transport properties of the implanted and annealed wafers. The results showed that ion implantation and thermal annealing caused significant decreases of the minority carrier lifetime and diffusion coefficient of the implantation layer, as well as the recombination velocity at the front surface. All three parameters decreased with the increasing implantation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Mandelis, J. Batista, D. Shaughnessy, Phys. Rev. B 67, 205208 (2003)

    Article  ADS  Google Scholar 

  2. J. Batista, A. Mandelis, D. Shaughnessy, Appl. Phys. Lett. 82, 4077 (2003)

    Article  ADS  Google Scholar 

  3. B. Li, D. Shaughnessy, A. Mandelis, J. Batista, J. Garcia, J. Appl. Phys. 96, 186 (2004)

    Article  ADS  Google Scholar 

  4. D. Shaughnessy, B. Li, A. Mandelis, J. Batista, Appl. Phys. Lett. 84, 5219 (2004)

    Article  ADS  Google Scholar 

  5. B. Li, D. Shaughnessy, A. Mandelis, J. Appl. Phys. 97, 023701 (2005)

    Article  ADS  Google Scholar 

  6. F. Sanii, F.P. Giles, R.J. Schwartz, J.L. Gray, Solid State Electron. 35, 311 (1992)

    Article  ADS  Google Scholar 

  7. L. Sirleto, A. Irace, G. Vitale, L. Zeni, A. Cutolo, J. Appl. Phys. 93, 3407 (2003)

    Article  ADS  Google Scholar 

  8. X. Zhang, B. Li, C. Gao, Appl. Phys. Lett. 89, 112120 (2006)

    Article  ADS  Google Scholar 

  9. X. Zhang, B. Li, C. Gao, J. Appl. Phys. 103, 033709 (2008)

    Article  ADS  Google Scholar 

  10. W. Li, B. Li, Acta Phys. Sin. 58, 9 (2009)

    Google Scholar 

  11. Q. Huang, B. Li, J. Appl. Phys. 109, 23708 (2011)

    Article  Google Scholar 

  12. C. Wang, A. Mandelis, J. Tolev, B. Burchard, J. Meijer, J. Appl. Phys. 101, 123109 (2007)

    Article  ADS  Google Scholar 

  13. X. Liu, B. Li, W. Gao, Y. Han, Acta Phys. Sin. 59, 1632 (2010)

    Google Scholar 

  14. D.K. Schroder, IEEE Trans. Electron Devices 44, 160 (1997)

    Article  ADS  Google Scholar 

  15. K. Lauer, A. Laades, H. Übensee, H. Metzner, A. Lawerenz, J. Appl. Phys. 104, 104503 (2008)

    Article  ADS  Google Scholar 

  16. W.L. Ng, M.A. Lourenço, R.M. Gwilliam, S. Ledain, G. Shao, K.P. Homewood, Nature 410, 192 (2001)

    Article  ADS  Google Scholar 

  17. D.J. Stowe, S.A. Galloway, S. Senkader, K. Mallik, R.J. Falster, P.R. Wilshaw, Physica B 340–342, 710 (2003)

    Article  Google Scholar 

  18. M. Milosavljevic, G. Shao, M.A. Lourenco, R.M. Gwilliam, K.P. Homewood, J. Appl. Phys. 97, 073512 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Science Foundation of China (Contract Nos. 61076090 and 60676058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bincheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Huang, Q. & Ren, S. Characterization of Silicon Wafers with Combined Photocarrier Radiometry and Free Carrier Absorption. Int J Thermophys 34, 1735–1745 (2013). https://doi.org/10.1007/s10765-013-1506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1506-z

Keywords

Navigation