Skip to main content
Log in

Molecular Dynamics Modeling of Latent Heat Enhancement in Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A discrete computational approach based on molecular dynamics (MD) simulations is proposed for evaluating the latent heat of vaporization of nanofluids. The computational algorithm, which considers the interaction of the solid and the fluid molecules, is used for obtaining the enhancement of the latent heat of a base fluid due to the suspension of nanoparticles. The method is validated by comparing the computed latent heat values of water with standard values at different saturation temperatures. Simulation of a water–platinum nanofluid system is performed, treating the volume fraction and size of nanoparticles as parameters. The trends in the variation are found to match well with experimental results on nanofluids. Discussions are also presented on the limitations of the proposed model, and on methods to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d NP :

Effective outer diameter of the nanoparticles

e :

Total energy

L :

Box length

m :

Mass, kg

N p :

Number of atoms in the nanoparticles

P :

Pressure

p(t):

Present pressure

P o :

Desired pressure

r :

Inter-atomic distance, m

r c.m :

Position of the center of mass of the nanoparticles

R g :

Radius of gyration

t :

Time

T :

Temperature

T o :

Desired temperature

v :

Velocity

μ :

Pressure scaling factor

β :

Isothermal compressibility factor

ε :

Minimum value of \({\phi_{\rm LJ, J}}\)

σ :

Inter-atomic distance at which \({\phi_{\rm LJ}=0}\), nm

τ p :

Time constant

\({\phi}\) :

Inter-atomic potential, J

O–O:

oxygen–oxygen

O–Pt:

oxygen–platinum

H–Pt:

hydrogen–platinum

i :

ith particle

j :

jth particle

References

  1. G.P. Peterson, C.B. Sobhan, Applications of Microscale Phase Change Heat Transfer: Micro Heat Pipes and Micro Heat Spreaders, in Handbook of Microelectromechanical Systems, ed. by M. Gad-el-Hak (Taylor and Francis/CRC Press, Boca Raton, FL, 2006)

  2. Sobhan C.B., Garimella S.V.: Microscale Thermophys. Eng. 5, 293 (2001)

    Article  Google Scholar 

  3. Garimella S.V., Sobhan C.B.: Annu. Rev. Heat Transf. 13, 1 (2003)

    Google Scholar 

  4. Das S.K., Putra N., Roetzel W.: Int. J. Heat Mass Transf. 46, 851 (2003)

    Article  Google Scholar 

  5. Kim H., Kim J., Kim M.H.: Int. J. Heat Mass Transf. 49, 5070 (2006)

    Article  Google Scholar 

  6. Rappaport D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  7. Sobhan C.B., Peterson G.P.: Microscale and Nanoscale Heat Transfer—Fundamentals and Engineering Applications. Taylor and Francis/CRC Press, Boca Raton, FL (2008)

    Google Scholar 

  8. Maruyama S.: Adv. Numer. Heat Transf. 2, 189 (2000)

    MathSciNet  Google Scholar 

  9. Sadus R.J.: Molecular Simulation of Fluids: Theory, Algorithm and Object Orientation. Elsevier, Amsterdam (1999)

    Google Scholar 

  10. Sankar N., Mathew N., Sobhan C.B.: Int. Commun. Heat Mass Transf. 35, 867 (2008)

    Article  Google Scholar 

  11. Spohr E., Heinzinger K.: Ber. Bunsen-Ges. Phys. Chem. 92, 1358 (1988)

    Google Scholar 

  12. Kimura T., Maruyama S.: Microscale Thermophys. Eng. 6, 3 (2002)

    Article  Google Scholar 

  13. J. Eapen, Ph. D. Dissertation, MIT, Boston, 2006

  14. Galliero G., Volz S.: J. Chem. Phys. 128, 064505 (2008)

    Article  ADS  Google Scholar 

  15. Berendsen H.J.C., Postma J.P.M., Gunsteren W.F.V., Nola A.D., Haak J.R.: J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  16. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  17. ASME Steam Tables, American Society of Mechanical Engineers (2006)

  18. Rahman A., Stillinger F.H.: J. Chem. Phys. 55, 3336 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Sobhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameen, M.M., Prabhul, K., Sivakumar, G. et al. Molecular Dynamics Modeling of Latent Heat Enhancement in Nanofluids. Int J Thermophys 31, 1131–1144 (2010). https://doi.org/10.1007/s10765-010-0839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0839-0

Keywords

Navigation