Skip to main content
Log in

A New Transient Two-Wire Method for Measuring the Thermal Diffusivity of Electrically Conducting and Highly Corrosive Liquids Using Small Samples

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The transient hot-wire (THW) technique is widely used for measurements of the thermal conductivity of most fluids, and some attempts have also been carried out for simultaneous measurements of the thermal diffusivity with the same hot wire. However, for some particular liquids like concentrated nitric acid solutions or similar nitric mixtures, for which the thermal properties are important for industrial or security applications, this technique may be difficult to use, because of possible technological incompatibilities between measurement probe materials and highly electrically conducting and corrosive liquids. Moreover, the possible highly energetic (explosive) character of these liquids requires minimum volume liquid samples and safety measurement devices and processes. It is the purpose of this paper to report on a modified THW technique (previously used for thermal-diffusivity measurements in soils), which is associated with a specific patented double-wire probe and is shown to be valid for direct thermal-diffusivity measurements in liquids. This method responds to the previous requirements and allows automatic and quasi-simultaneous thermal-conductivity and thermal-diffusivity measurements to be made safely on liquids compatible with the tantalum technology, with liquid sample volumes < 2 cm3. Low uncertainties are found for the thermal-diffusivity data when relative measurements are carried out with reference liquids like water or toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nietode Castro C.A., Taxis B., Roder H.M., Wakeham W.A.: Int. J. Thermophys. 9, 316 (1988)

    Article  Google Scholar 

  2. Watanabe H., Seong D.J.: Int. J. Thermophys. 23, 2 (2002)

    Google Scholar 

  3. Watanabe H.: Int. J. Thermophys. 18, 2 (1997)

    Article  Google Scholar 

  4. Zhang X., Fujii M.: Int. J. Thermophys. 21, 71 (2000)

    Article  Google Scholar 

  5. Zhang X., Gu H., Fujii M.: Exp. Therm. Fluid Sci. 31, 593 (2007)

    Article  Google Scholar 

  6. Griesinger A., Spindler K., Hahne E.: Heat. Mass. Transfer 32, 419 (1997)

    Article  ADS  Google Scholar 

  7. Griesinger A., Heidemann W., Hahne E.: Int. Comm. Heat Mass Transfer 26, 451 (1999)

    Article  Google Scholar 

  8. Garnier J.P., Maye J.P, Saillard J., Thevenot G., Kadjo A., Martemianov S.: Int. J. Thermophys. 29, 468 (2008)

    Article  Google Scholar 

  9. Bristow K.L., Kuitenberg G.J., Goding C.J., Fitzgerald T.S.: Comput. Electron. Agr. 31, 265 (2001)

    Article  Google Scholar 

  10. Cardonne S.M., Kumar P., Michaluk C.A., Schwartz H.D.: Int. J. Refract. Met. Hard Mater. 13, 187 (1995)

    Article  Google Scholar 

  11. Milosevic N.D., Vukovic G.S., Pavicic D.Z., Maglic K.D.: Int. J. Thermophys. 20, 1129 (1999)

    Article  Google Scholar 

  12. Cardarelli F., Taxil P., Savall A.: Int. J. Refract. Met. Hard Mater. 14, 365 (1996)

    Article  Google Scholar 

  13. Alloush A., Gosney W.B., Wakeham W.A.: Int. J. Thermophys. 3, 225 (1982)

    Article  Google Scholar 

  14. Ramires M.L.V., Fareleira J.M.N.A., Nietode Castro C.A., Dix M., Wakeham W.A.: Int. J. Thermophys. 14, 6 (1993)

    Google Scholar 

  15. Vermilyea D.A.: Acta Metal. 1, 282 (1953)

    Article  Google Scholar 

  16. Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford University Press, London (1959)

    Google Scholar 

  17. de Vries D.A.: Soil Sci. Soc. Am. J. 73, 83 (1952)

    Google Scholar 

  18. Kuitenberg G.J., Ham J.M., Bristow K.H.: Soil Sci. Soc. Am. J. 57, 1451 (1993)

    Google Scholar 

  19. Bristow K.L.: Agr. Forest Meteorol. 89, 75 (1998)

    Article  Google Scholar 

  20. Bilskie J.R., Horton R., Bristow K.L.: Soil Sci. 163, 346 (1998)

    Article  Google Scholar 

  21. Kuitenberg G.J., Bristow K.L., Das B.S.: Soil. Sci. Soc. Am. J. 59, 719 (1995)

    Google Scholar 

  22. Bristow K.L., Bilskie J.R., Kuitenberg G.J., Horton R.: Soil Sci. 160, 1 (1995)

    Article  Google Scholar 

  23. Bristow K.L., White R.D., Kuitenberg G.J.: Aust. J. Soil Res. 32, 447 (1994)

    Article  Google Scholar 

  24. G. Thevenot, J. Saillard, J.-P. Maye, J.-Ph. Garnier, European Patent Office, EP 1724572 A1 (2006)

  25. Beirao S.G.S., Ramires M.L.V., Dix M., Nietode Castro C.A.: Int. J. Thermophys. 27, 4 (2006)

    Article  Google Scholar 

  26. Bejan A.: Heat Transfer, pp. 637. John Wiley & Sons, Inc., New York (1993)

    Google Scholar 

  27. Gultekin D.H., Gore J.C.: Magn. Reson. Imaging 24, 1203 (2006)

    Article  Google Scholar 

  28. Fröba A.P., Will S., Leipertz A.: Fluid Phase Equilib. 161, 337 (1999)

    Article  Google Scholar 

  29. Fröba A.P., Kremer H., Leipertz A., Flohr F., Meurer C.: Int. J. Thermophys. 28, 449 (2007)

    Article  Google Scholar 

  30. Calculation Software based on the German VDI Waermeatlas, 10th edn., available via DIALOGn, http://www.lv-soft.com/software/fachbereiche/vdi/helpcontents1.htm (Accessed March 19, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kadjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadjo, A., Garnier, JP., Maye, J.P. et al. A New Transient Two-Wire Method for Measuring the Thermal Diffusivity of Electrically Conducting and Highly Corrosive Liquids Using Small Samples. Int J Thermophys 29, 1267–1277 (2008). https://doi.org/10.1007/s10765-008-0472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0472-3

Keywords

Navigation