Skip to main content
Log in

Measurements of the Thermal Conductivity of Molten Lead Using a New Transient Hot-Wire Sensor

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The paper reports new measurements of the thermal conductivity of molten lead at temperatures from 600 to 750 K. The measurements have been carried out with an updated version of a modified transient hot-wire (THW) method, where the hot-wire sensor is embedded within an insulating substrate with a planar geometry. However, unlike previous sensors of the same type, the updated sensor works with the hot-wire divided into three thermally isolated parts. The operation of this sensor has been modeled theoretically using a finite-element (FE) analysis and has subsequently been confirmed by direct observation. The new sensor is demonstrated to have a higher sensitivity and a better signal-to-noise ratio than earlier sensors. Molten lead is used as the test fluid. It has the lowest thermal conductivity of any material we have yet studied. This allows us to probe the limits of our sensor system for the thermal conductivity of high-temperature melts. It is estimated that the uncertainty of the measurements is 3% over the temperature range studied. The results are used to examine the application of the Wiedemann–Franz (W-F) relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Assael, C. A. Nieto de Castro, H. R. van den Berg, and W. A. Wakeham, “An Instrument for the Measurement of the Thermal Conductivity of High-Temperature Melts,” Research Report for European Project FP4 Commission (1997).

  2. Peralta-Martinez M.V., Assael M.J., Dix M.J., Karagiannidis L., and Wakeham W.A. (2006). Int. J. Thermophys. 27:353

    Article  Google Scholar 

  3. M. V. Peralta-Martinez, Thermal Conductivity of Molten Metals (Ph.D. Thesis, Imperial College, 2000).

  4. Peralta-Martinez M.V., Assael M.J., Dix M.J., Karagiannidis L., and Wakeham W.A. (2006). Int. J. Thermophys. 27:681

    Article  Google Scholar 

  5. J. Bilek, J. Atkinson, and W. Wakeham, Proc. of Electronic Devices and Systems Conf. Brno (2004).

  6. J. Bilek, J. K. Atkinson, and W. A. Wakeham, Proc. of EuroSimE, Berlin (2005).

  7. Bilek J., Atkinson J.K., and Wakeham W.A. (2006). Int. J. Thermophys. 27:92

    Article  Google Scholar 

  8. Bilek J., Atkinson J.K., and Wakeham W.A. (2006). Int. J. Thermophys. 27:1626

    Article  Google Scholar 

  9. J. Bilek, Sensors for Thermal Conductivity at High Temperatures (Ph.D. Thesis, University of Southampton, 2006).

  10. Osipenko V.P. (1970). Russ. Phys. J. 13:1570

    Google Scholar 

  11. Duggin M.J. (1972). J. Phys. F: Metal Phys. 2:433

    Article  ADS  Google Scholar 

  12. Hemminger W. (1989). Int. J. Thermophys. 10:765

    Article  Google Scholar 

  13. Nakamura S., Hibiya T., and Yamamoto F. (1990). J. Appl. Phys. 68:5125

    Article  ADS  Google Scholar 

  14. Yamasue E., Susa M., Fukuyama H., and Nagata K. (2003). Int. J. Thermophys. 24:713

    Article  Google Scholar 

  15. Monaghan B.J.(1999). Int. J. Thermophys. 20:677

    Article  Google Scholar 

  16. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter (IFI/Plenum, New York, 1970).

  17. Ho C.Y., Powell R.W., and Liley P.E. (1972). J. Phys. Chem. Ref. Data 1:279

    Article  Google Scholar 

  18. K. C. Mills, B. J. Monaghan, and B. J. Keene, Proc. 23rd Int. Thermal Conductivity Conf., Thermal Conductivity 23 (Technomic Pub. Co., Lancaster, Pennsylvania, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Wakeham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilek, J., Atkinson, J. & Wakeham, W. Measurements of the Thermal Conductivity of Molten Lead Using a New Transient Hot-Wire Sensor. Int J Thermophys 28, 496–505 (2007). https://doi.org/10.1007/s10765-007-0182-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0182-2

Keywords

Navigation