Skip to main content
Log in

Contact mode thermal sensors for ultrahigh-temperature region of 2000–3500 K

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this article, we reviewed several existing techniques that were capable of detecting local temperatures in the range of 2000–3500 K in a contact manner. These techniques included several non-standard thermocouples, Seger cones and ultrasonic meters. In particular, ultrasonic meters made of tungsten (W) wires were proven to be working well in nuclear plant for detecting the central temperature of reaction zone. We also presented two alternative approaches. One of them was a kind of single-metal-based thermal sensor made from W, Mo and Ta wires, which utilized the size effect of Seebeck coefficient and theoretically applicable in contact mode measurement up to 3500 K. The other was a kind of detectors with micro-/nano-patterns, which utilized the size effect of surface melting point of bulky materials. This work should shed light on measurement approaches for ultrahigh temperatures in a variety of practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fairchild C, Hoover W. Disappearance of the filament and diffraction effects in improved forms of an optical pyrometer1. JOSA. 1923;7(7):543.

    Article  Google Scholar 

  2. Coates P, Lowe D. The Fundamentals of Radiation Thermometers. Boca Raton: CRC Press; 2016. 75.

    Book  Google Scholar 

  3. Morozhenko V. Infrared Radiation. Rijeka: InTech; 2012. 85.

    Book  Google Scholar 

  4. Skorupa W, Schmidt H. Subsecond Annealing of Advanced Materials: Annealing by Lasers, Flash Lamps and Swift Heavy Ions. Cham: Springer; 2013. 211.

    Google Scholar 

  5. Ulanovskiy A, Edler F, Fischer J, Oleynikov P, Zaytsev P, Pokhodun A. Features of high-temperature calibration of W/Re thermocouples. Int J Thermophys. 2015;36(2–3):433.

    Article  Google Scholar 

  6. Ulanovskiy A, Medvedev V, Nenashev S, Sild YA, Matveyev M, Pokhodun A, Oleynikov P. Thermoelectric characteristic of high-temperature thermocouples W5% RE/W20% RE. Int J Thermophys. 2010;31(8–9):1573.

    Article  Google Scholar 

  7. Beerman H. Calibration of pyrometric cones. J Am Ceram Soc. 1956;39(2):47.

    Article  Google Scholar 

  8. Basegio T, Haas C, Pokorny A, Bernardes A, Bergmann C. Production of materials with alumina and ashes from incineration of chromium tanned leather shavings: environmental and technical aspects. J Hazard Mater. 2006;137(2):1156.

    Article  Google Scholar 

  9. Rea RF. Temperature measuring cones. J Am Ceram Soc. 1938;21(3):98.

    Article  Google Scholar 

  10. Kazys R, Zukauskas E, Rekuviene R. Modeling of ultrasonic measurement systems with waveguides. Elektronika ir Elektrotechnika. 2012;123(7):61.

    Article  Google Scholar 

  11. Zhao XH, Wang YR, Chen YZ, Jiang HC, Zhang WL. Enhanced thermoelectric property and stability of NiCr–NiSi thin film thermocouple on superalloy substrate. Rare Met. 2017;36(6):512.

    Article  Google Scholar 

  12. Li G, Wang Z, Mao X, Zhang Y, Huo X, Liu H, Xu S. Real-time two-dimensional mapping of relative local surface temperatures with a thin-film sensor array. Sensors. 2016;16(7):977.

    Article  Google Scholar 

  13. Choi H, Li X. Experimental investigations of laser micromachining of nickel using thin film micro thermocouples. J Manuf Sci Eng. 2008;130(2):021002.

    Article  Google Scholar 

  14. Gregory OJ, You T. Ceramic temperature sensors for harsh environments. IEEE Sens J. 2005;5(5):833.

    Article  Google Scholar 

  15. Chu D, Wong WK, Goodson KE, Pease RFW. Transient temperature measurements of resist heating using nanothermocouples. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2003;21(6):2985.

    Article  Google Scholar 

  16. Chu D, Bilir DT, Pease RFW, Goodson KE. Submicron thermocouple measurements of electron-beam resist heating. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2002;20(6):3044.

    Article  Google Scholar 

  17. Chopra K, Bahl S, Randlett M. Thermopower in thin-film copper—constantan couples. J Appl Phys. 1968;39(3):1525.

    Article  Google Scholar 

  18. Justi E, Kohler M, Lautz G. Über die differentielle Thermokraft dünner Metallschichten. Zeitschrift für Naturforschung A. 1951;6(8):456.

    Google Scholar 

  19. Asamoto R, Novak P. Tungsten-rhenium thermocouples for use at high temperatures. Rev Sci Instrum. 1967;38(8):1047.

    Article  Google Scholar 

  20. Bradley D, Matthews K. Measurement of high gas temperatures with fine wire thermocouples. J Mech Eng Sci. 1968;10(4):299.

    Article  Google Scholar 

  21. Wei Y, Wang G, Gao Y, Liu Z, Xu L, Tian M, Yuan D, Ren H, Zhou H, Yang L. A measurement system of high-temperature oxidation environment with ultrasonic Ir0.6Rth0.4 alloy thermometry. Ultrasonics. 2018;89:102.

    Article  Google Scholar 

  22. Laurie M, Magallon D, Rempe J, Wilkins C, Pierre J, Marquié C, Eymery S, Morice R. Ultrasonic high-temperature sensors: past experiments and prospects for future use. Int J Thermophys. 2010;31(8–9):1417.

    Article  Google Scholar 

  23. Carlson G, Plein HG. Refractory metals for ultrasonic thermometry application. 1978;10(9):10448109.

    Google Scholar 

  24. Tasman HA. Nuclear applications of ultrasonic thermometry. In: Proceedings of the Ultrasonics Symposium, New Orleans; 1979. 380.

  25. Lynnworth LC, Carnevale EH, Mcdonough MS, Fam SS. Ultrasonic thermometry for nuclear reactors. Nucl Sci IEEE Trans. 1969;16(1):184.

    Article  Google Scholar 

  26. Arave A, Christensen J, Panisko F. High-temperature ultrasonic thermometer for in-reactor fuel rod centerline temperature measurements. Trans Am Nucl Soc. 1972;15(2):766.

    Google Scholar 

  27. Liu H, Sun W, Xu S. An extremely simple thermocouple made of a single layer of metal. Adv Mater. 2012;24(24):3275.

    Article  Google Scholar 

  28. Huo X, Liu H, Liang Y, Fu M, Sun W, Chen Q, Xu S. a nano-stripe based sensor for temperature measurement at the submicrometer and nano scales. Small. 2014;10(19):3869.

    Article  Google Scholar 

  29. Sun W, Liu H, Gong W, Peng LM, Xu SY. Unexpected size effect in the thermopower of thin-film stripes. J Appl Phys. 2011;110(8):083709.

    Article  Google Scholar 

  30. Szakmany GP, Orlov AO, Bernstein GH, Porod W. Comment on “Unexpected size effect in the thermopower of thin-film stripes”. J Appl Phys. 2014;115(23):236101.

    Article  Google Scholar 

  31. Huo X, Sun W, Liu H, Peng L, Xu S. Response to comment on ‘Unexpected size effect in the thermopower of thin-film stripes’. J Appl Phys. 2014;115(23):236102.

    Article  Google Scholar 

  32. Szakmany GP, Orlov AO, Bernstein GH, Porod W. Single-metal nanoscale thermocouples. IEEE Trans Nanotechnol. 2014;13(6):1234.

    Article  Google Scholar 

  33. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353.

    Article  Google Scholar 

  34. Buffat P, Borel JP. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13(6):2287.

    Article  Google Scholar 

  35. Lai S, Guo J, Petrova V, Ramanath G, Allen L. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett. 1996;77(1):99.

    Article  Google Scholar 

  36. Wang ZL, Petroski JM, Green TC, El-Sayed MA. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B. 1998;102(32):6145.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (Nos. 2016YFA0200802 and 2017YFA0701302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Yong Xu or Li-Jiang Gui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SY., Wang, ZH. & Gui, LJ. Contact mode thermal sensors for ultrahigh-temperature region of 2000–3500 K. Rare Met. 38, 713–720 (2019). https://doi.org/10.1007/s12598-019-01249-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01249-8

Keywords

Navigation