Skip to main content
Log in

Equations for the Thermal Conductivity of R-32, R-125, R-134a, and R-143a

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

At present hydrofluorocarbons (HFCs) such as R32, R-125, R-134a, and R-143a are widely used, and it is required to obtain accurate information of thermophysical properties, especially of the thermal conductivity of HFCs. In this paper new thermal conductivity equations for R-32, R-125, R134a, and R143a are proposed, applicable over a wide range of temperature and pressure including the critical region based on existing experimental data, and the reliability of the present equations is summarized. The problem that the thermal conductivity calculated from the thermal diffusivity in the critical region differs depending on the equation of state is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Krauss J. Luettmer-Strathmann J.V. Sengers K. Stephan (1993) Int. J. Thermophys. 14 951 Occurrence Handle10.1007/BF00502117

    Article  Google Scholar 

  2. S.B. Kiselev R.A. Perkins M.L. Huber (1999) Int. J. Refrig. 22 509 Occurrence Handle10.1016/S0140-7007(99)00007-9

    Article  Google Scholar 

  3. J. Yata M. Hori Y. Isono Y. Ueda (2001) Int. J. Thermophys. 22 1369 Occurrence Handle10.1023/A:1012884718834

    Article  Google Scholar 

  4. M.J. Assael L. Karagiannidis (1995) Int. J. Thermophys. 16 851 Occurrence Handle10.1007/BF02093468

    Article  Google Scholar 

  5. Gao X., Iijima H., Nagasaka Y., Nagashima A. (1995). Proc. Fourth Asian Thermophys. Prop. Conf., Tokyo, pp. 125–129.

  6. V. Z. Geller and Paulaitis M.E., Presented at 12th Symp. Thermophys. Prop., Boulder, Corolado (1994).

  7. Grebenkov A.J., Yu. Kotelevsky G., Spalitza V.V., Beljaeva O.V., Zajatz T.A., and Timofeev B.D., “CFCs, the day after,” Proc. of Joint Meetings of IIR Commissions B1, B2, E1 and E2, Padova (1994), pp. 419-429.

  8. U. Gross Y.W. Song (1996) Int. J. Thermophys. 17 607 Occurrence Handle10.1007/BF01441507

    Article  Google Scholar 

  9. B. Le Neindre Y. Garrabos (2001) Int. J. Thermophys. 22 701 Occurrence Handle10.1023/A:1010766730306

    Article  Google Scholar 

  10. M. Papadaki W.A. Wakeham (1993) Int. J. Thermophys. 14 1215 Occurrence Handle10.1007/BF00503683

    Article  Google Scholar 

  11. S.T. Ro J.Y. Kim D.S. Kim (1995) Int. J. Thermophys. 16 1193 Occurrence Handle10.1007/BF02081287

    Article  Google Scholar 

  12. Y. Tanaka S. Matsumoto S. Taya (1995) Int. J. Thermophys. 16 121 Occurrence Handle10.1007/BF01438963

    Article  Google Scholar 

  13. J. Yata M. Hori K. Kobayashi T. Minamiyama (1996) Int. J. Thermophys. 17 561 Occurrence Handle10.1007/BF01441503

    Article  Google Scholar 

  14. M. Pitschmann J. Straub (2002) Int. J. Thermophys. 23 877 Occurrence Handle10.1023/A:1016511014722

    Article  Google Scholar 

  15. Assael M.J., Malamatararis N.A., and Karagiannidis L., Proc. 4th Asian Thermophys. Prop. Conf., Tokyo (1995), pp. 339–342.

  16. Fellows B.R., R. G.. Richard and Shankland L., Thermal Conductivity 21, C. J. Cremers and Fine H.A., eds. (1990), Plenum Press, New York, pp. 311–325.

  17. X. Gao T. Yamada Y. Nagasaka A. Nagashima (1996) Int. J. Thermophys. 17 279 Occurrence Handle10.1007/BF01443393

    Article  Google Scholar 

  18. Kim D.S., Yang M.H., Kim M.S., and Ro S.T., Proc. 4th Asian Thermophys. Prop. Conf., Tokyo (1995), pp. 113–116.

  19. B. Le Neindre Y. Garrabos (1999) Int. J Thermophys. 20 375 Occurrence Handle10.1023/A:1022692601764

    Article  Google Scholar 

  20. L.-Q. Sun M.-S. Zhu L.-Z. Han Z.-Z. Lin (1997) J. Chem. Eng. Data 42 179 Occurrence Handle10.1021/je960245k

    Article  Google Scholar 

  21. O.B. Tsvetkov A.V. Kletski Yu. A. Laptev A.J. Asambaev I.A. Zausaev (1995) Int. J. Thermophys. 16 1185 Occurrence Handle10.1007/BF02081286

    Article  Google Scholar 

  22. O.B. Tsvetkov Yu.A. Laptev A.G Asambaev (1995) Int. J. Thermophys. 15 203 Occurrence Handle10.1007/BF01441582

    Article  Google Scholar 

  23. L.C. Wilson W.V. Wilding G.M. Wilson R.L. Rowley V.M Felix T. Chisolm-Carter (1992) Fluid Phase Equilib. 80 167 Occurrence Handle10.1016/0378-3812(92)87065-U

    Article  Google Scholar 

  24. M.J. Assael E. Karagiannidis (1993) Int J. Thermophys. 14 183 Occurrence Handle10.1007/BF00507807

    Article  Google Scholar 

  25. U. Gross T.W. Song E. Hahne (1992) Int. J. Thermophys. 13 957 Occurrence Handle10.1007/BF01141209

    Article  Google Scholar 

  26. N. Gurova U.V. Mardolcar C.A. Nietode Castro (1997) Int J. Thermophys. 18 1077

    Google Scholar 

  27. A. Laesecke R.A. Perkins C.A. Nietode Castro (1992) Fluid Phase Equilib 80 263 Occurrence Handle10.1016/0378-3812(92)87073-V

    Article  Google Scholar 

  28. B. Le Neindre Y. Garrabos (1999) Int. J. Thermophys. 20 1379 Occurrence Handle10.1023/A:1021480803361

    Article  Google Scholar 

  29. M. Papadaki M. Schmitt A. Seitz K. Stephan B. Taxis W.A. Wakeham (1993) Int. J. Thermophys. 14 173 Occurrence Handle10.1007/BF00507806

    Article  Google Scholar 

  30. Y. Tanaka M. Naka T. Makita (1991) Int. J. Thermophys. 12 949 Occurrence Handle10.1007/BF00503512

    Article  Google Scholar 

  31. R. Yamamoto S. Matsuo Y. Tanaka (1993) Int. J Thermophys. 14 79 Occurrence Handle10.1007/BF00522663

    Article  Google Scholar 

  32. Yata J., Kawashima C., M Hori, and Minamiyama T., Proc. 2nd Asian Thermophys. Prop Conf. (1989), pp. 201–205.

  33. B. Kruppa J. Straub (1992) Fluid Phase Equilib. 80 305 Occurrence Handle10.1016/0378-3812(92)87077-Z

    Article  Google Scholar 

  34. Lee S.H., M. S Kim, and Ro S.T., paper presented at 14th Symp. Thermophys Prop., Boulder, Colorado (2000).

  35. B. Le Neindre Y Garrabos M.S. Kim (2001) Int. J. Thermophys. 22 723 Occurrence Handle10.1023/A:1010718814377

    Article  Google Scholar 

  36. G.A. Olchowy J.V. Sengers (1989) Int. J. Thermophys. 10 417 Occurrence Handle10.1007/BF01133538

    Article  Google Scholar 

  37. S.B. Kiselev M.L. Huber (1998) Int. J. Refrig. 21 64 Occurrence Handle10.1016/S0140-7007(97)00069-8

    Article  Google Scholar 

  38. R. Tillner-Roth A. Yokozeki (1997) J. Phys. Chem. Ref. Data 25 1273

    Google Scholar 

  39. H. Sunaga R. Tillner-Roth H. Sato K Watanabe (1998) Int. J. Thermophys. 19 1623

    Google Scholar 

  40. R. Tillner-Roth H.D. Baehr (1994) J. Phys. Chem. Ref. Data 23 657

    Google Scholar 

  41. S.L. Outcalt M.O. McLinden (1997) Int J. Thermophys. 18 1445

    Google Scholar 

  42. McLinden M.O., Klein S.A., Lemmon E.W., and Peskin A.W., NIST Standard Database 23, REFPROP Ver.sion 6.01, Nat. Inst. Stand. Technol., Boulder, Colorado (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yata.

Additional information

Paper presented at the Sixteenth European Conference for Thermophysical Properties, September 1–4, 2002, London, United Kingdom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yata, J., Ueda, Y. & Hori, M. Equations for the Thermal Conductivity of R-32, R-125, R-134a, and R-143a. Int J Thermophys 26, 1423–1435 (2005). https://doi.org/10.1007/s10765-005-8095-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8095-4

Keywords

Navigation