Skip to main content
Log in

Self-Diffusion and Binary Maxwell–Stefan Diffusion Coefficients of Quadrupolar Real Fluids from Molecular Simulation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Self- and binary Maxwell–Stefan (MS) diffusion coefficients were determined by equilibrium molecular dynamics simulations with the Green–Kubo method. This study covers self-diffusion coefficients at liquid states for eight pure fluids, i.e., F2, N2, CO2, CS2, C2H6, C2H4, C2H2, and SF6 as well as MS diffusion coefficients for three binary mixtures N2+CO2, N2+C2H6, and CO2+C2H6. The fluids were modeled by the two-center Lennard–Jones plus point-quadrupole pair potential, with parameters taken from previous work of our group which were determined solely on the basis of vapor–liquid equilibrium data. Self-diffusion coefficients are predicted with a statistical uncertainty less than 1%, and they agree within 2–28% with the experimental data. The correction of the simulation data due to the finite size of the system increases the value of the self-diffusion coefficient typically by 10%. If this correction is considered, better agreement with the experimental data can be expected for most of the studied fluids. MS diffusion coefficients for three binary mixtures were also predicted; their statistical uncertainty is about 10%. These results were used to test three empirical equations to estimate MS diffusion coefficients in binary mixtures, i.e., the equations of Caldwell and Babb, of Darken, and of Vignes. The equations of Caldwell and Babb and of Vignes show qualitatively different behavior of the MS diffusion coefficient than that observed in the simulations. In agreement with previous work, the best results are obtained in all cases with the equation of Darken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Alder T.E. Wainwright (1967) Phys. Rev. Lett. 18 988 Occurrence Handle10.1103/PhysRevLett.18.988

    Article  Google Scholar 

  2. B.J. Alder T.E. Wainwright (1970) Phys. Rev. A 1 18 Occurrence Handle10.1103/PhysRevA.1.18

    Article  Google Scholar 

  3. G. Jaccuci I.R. McDonald (1975) Physica A 80 607 Occurrence Handle10.1016/0378-4371(75)90121-1

    Article  Google Scholar 

  4. D. Jolly R. Bearman (1980) Mol. Phys. 41 137

    Google Scholar 

  5. M. Schoen C. Hoheisel (1984) Mol. Phys. 52 33

    Google Scholar 

  6. J.M. Stoker R.L. Rowley (1989) J. Chem. Phys. 91 3670 Occurrence Handle10.1063/1.456847

    Article  Google Scholar 

  7. R.L. Rowley J.M. Stoker (1991) Int. J. Thermophys. 12 501 Occurrence Handle10.1007/BF00502365

    Article  Google Scholar 

  8. G.A. Fernández J. Vrabec H. Hasse (2004) Int. J Thermophys. 25 175 Occurrence Handle10.1023/B:IJOT.0000022333.07168.c4

    Article  Google Scholar 

  9. G.A. Fernández J. Vrabec H. Hasse (2004) Fluid Phase Equilib. 221 157 Occurrence Handle10.1016/j.fluid.2004.05.011

    Article  Google Scholar 

  10. I.R. McDonald K. Singer (1972) Mol. Phys. 23 29

    Google Scholar 

  11. P.S.Y. Cheung J.G. Powles (1975) Mol. Phys. 30 921

    Google Scholar 

  12. R. Vogelsang C. Hoheisel (1987) Phys. Chem. Liq. 16 189

    Google Scholar 

  13. C. Hoheisel (1987) Mol. Phys. 62 239

    Google Scholar 

  14. D. Möller J. Fischer (1994) Fluid Phase Equilib. 100 35 Occurrence Handle10.1016/0378-3812(94)80002-2

    Article  Google Scholar 

  15. J. Vrabec J. Stoll H. Hasse (2001) J. Phys. Chem. B 105 12126 Occurrence Handle10.1021/jp012542o

    Article  Google Scholar 

  16. C.S. Caldwell A.L. Babb (1956) J. Phys. Chem. 60 51 Occurrence Handle10.1021/j150535a014

    Article  Google Scholar 

  17. L.S. Darken (1948) Trans. Am. Inst. Mining Metall. Eng. 175 184

    Google Scholar 

  18. A. Vignes (1966) Ind. Eng. Chem. Fundam. 5 189 Occurrence Handle10.1021/i160018a007

    Article  Google Scholar 

  19. C.G. Gray K.E. Gubbins (1984) Theory of Molecular Fluids, Vol. 1: Fundamentals Clarendon Press Oxford

    Google Scholar 

  20. J. Vrabec J. Fischer (1996) AIChE J. 43 212 Occurrence Handle10.1002/aic.690430123

    Article  Google Scholar 

  21. J. Vrabec J. Stoll H. Hasse (2005) Mol. Sim. 31 215

    Google Scholar 

  22. J. Stoll J. Vrabec H. Hasse (2003) AIChE J. 49 2187 Occurrence Handle10.1002/aic.690490826

    Article  Google Scholar 

  23. M.S. Green (1954) J. Chem. Phys. 22 398 Occurrence Handle10.1063/1.1740082

    Article  Google Scholar 

  24. R. Kubo (1957) J. Phys. Soc. Japan 12 570 Occurrence Handle10.1143/JPSJ.12.570

    Article  Google Scholar 

  25. R. Zwanzig (1965) Ann. Rev. Phys. Chem. 16 67 Occurrence Handle10.1146/annurev.pc.16.100165.000435

    Article  Google Scholar 

  26. C. Hoheisel (1994) Phys. Rep. 245 111 Occurrence Handle10.1016/0370-1573(94)90075-2

    Article  Google Scholar 

  27. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry.

  28. R. Lustig (1988) Mol. Phys. 65 175

    Google Scholar 

  29. J.M. Haile (1997) Molecular Dynamics Simulation John Wiley & Sons New York

    Google Scholar 

  30. S. Nosé (2002) Mol. Phys. 100 191 Occurrence Handle10.1080/00268970110089108

    Article  Google Scholar 

  31. D. Frenkel B. Smit (1996) Understanding Molecular Simulation Academic Press San Diego

    Google Scholar 

  32. H.C. Andersen (1980) J. Chem. Phys. 72 2384 Occurrence Handle10.1063/1.439486

    Article  Google Scholar 

  33. D. Fincham N. Quirke D.J. Tildesley (1986) J. Chem Phys. 84 4535 Occurrence Handle10.1063/1.450824

    Article  Google Scholar 

  34. H. Liu C.M. Silva E.A. Macedo (1998) Chem. Eng. Sci. 53 2403 Occurrence Handle10.1016/S0009-2509(98)00036-0

    Article  Google Scholar 

  35. D.E. O’Reilly E.M. Peterson D.I. Hogenboom C.E. Scheie (1971) J. Chem. Phys. 54 4194

    Google Scholar 

  36. K. Krynicki E.J. Rahkamaa J.P. Powles (1974) Mol Phys. 28 853

    Google Scholar 

  37. P.E. Etesse J.A. Zega R. Kobayashi (1992) J. Chem Phys. 97 2022 Occurrence Handle10.1063/1.463139

    Article  Google Scholar 

  38. L.A. Woolf (1982) J. Chem. Soc. Faraday Trans. 1 IssueID78 583

    Google Scholar 

  39. N.B. Vargaftik Y.K. Vinogradov V.S. Yargin (1996) Handbook of Physical Properties of Liquids and Gases Begell House New York

    Google Scholar 

  40. Lemmon E.W., McLinden M.O., and Huber M.L., REFPROP (NIST Standard Reference Database 23, Version 7.0, 2002).

  41. A. Greiner-Schmid S. Wappmann M. Has H.D Lüdemann (1991) J. Chem. Phys. 94 5643 Occurrence Handle10.1063/1.460474

    Article  Google Scholar 

  42. B. Arends K.O. Prins N.J. Trappeniers (1981) Physica A 107 307 Occurrence Handle10.1016/0378-4371(81)90091-1

    Article  Google Scholar 

  43. C.E. Scheie E.M. Peterson D.E. O’Reilly (1973) J Chem. Phys. 59 2303 Occurrence Handle10.1063/1.1680335

    Article  Google Scholar 

  44. J.K. Tison E.R. Hunt (1971) J. Chem. Phys. 54 1526 Occurrence Handle10.1063/1.1675049

    Article  Google Scholar 

  45. T.E. Daubert R.P. Danner (1985) Data Compilation Tables of Properties of Pure Substances, AIChE American Chemical Society New York

    Google Scholar 

  46. I. Yeh G. Hammer (2004) J. Chem. Phys. 108 158

    Google Scholar 

  47. F.A.L. Dullien (1971) Ind. Eng. Chem. Fundam. 10 41 Occurrence Handle10.1021/i160037a009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vrabec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, G.A., Vrabec, J. & Hasse, H. Self-Diffusion and Binary Maxwell–Stefan Diffusion Coefficients of Quadrupolar Real Fluids from Molecular Simulation. Int J Thermophys 26, 1389–1407 (2005). https://doi.org/10.1007/s10765-005-8093-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8093-6

Keywords

Navigation