Skip to main content

Advertisement

Log in

Thermal Conductivity, Thermal Diffusivity, and Heat Capacity of Gaseous Argon and Nitrogen

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Low-pressure thermal conductivity and thermal diffusivity measurements are reported for argon and nitrogen in the temperature range from 295 to 350 K at pressures from 0.34 to 6.9 MPa using an absolute transient hot-wire instrument. Thermal conductivity measurements were also made with the same instrument in its steady-state mode of operation. The measurements are estimated to have an uncertainty of 1% for the transient thermal conductivity, 3% for the steady-state thermal conductivity, and 4% for thermal diffusivity. The values of isobaric specific heat, derived from the measured thermal conductivity and thermal diffusivity, are considered accurate to 5% although this is dependent upon the uncertainty of the equation of state utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sun J. E. S. Venart R. C. Prasad (2002) Int. J. Thermophys. 23 357 Occurrence Handle10.1023/A:1015153318137 Occurrence Handle1:CAS:528:DC%2BD38XktFCjur4%3D

    Article  CAS  Google Scholar 

  2. L. Sun J. E. S. Venart R. C. Prasad (2002) Int J Thermophys 23 391 Occurrence Handle10.1023/A:1015105402207

    Article  Google Scholar 

  3. L. Sun J. E. S. Venart R. C. Prasad (2002) Int. J. Thermophys. 23 1487 Occurrence Handle10.1023/A:1020733832332 Occurrence Handle1:CAS:528:DC%2BD38XotFWktbY%3D

    Article  CAS  Google Scholar 

  4. L. Sun, Ph. D. Dissertation, Dept. of Mech. Eng., University of New Brunswick, Canada, (2002).

  5. R. Span (2000) Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data Springer Berlin, Heidelberg, New York

    Google Scholar 

  6. J. J. Healy J. J. Groot Particlede J. Kestin (1976) Physica 82C 392

    Google Scholar 

  7. C. A. Nietode Castro B. Taxis H. M. Roder W. A. Wakeham (1988) Int. J. Thermophys. 9 293 Occurrence Handle10.1007/BF00513073 Occurrence Handle1:CAS:528:DyaL1cXlslOkurs%3D

    Article  CAS  Google Scholar 

  8. J. Menashe W. A. Wakeham (1982) Int. J. Heat Mass Transfer 25 661 Occurrence Handle10.1016/0017-9310(82)90171-5 Occurrence Handle1:CAS:528:DyaL38XkvVSjsb0%3D

    Article  CAS  Google Scholar 

  9. C. A. Nietode Castro S. F. Y. Li G. C. Maitland W. A. Wakeham (1988) Int. J. Thermophys. 4 311

    Google Scholar 

  10. B. Taxis K. Stephan (1994) Int. J. Thermophys. 15 141 Occurrence Handle10.1007/BF01439251 Occurrence Handle1:CAS:528:DyaK2cXitVWrtLg%3D

    Article  CAS  Google Scholar 

  11. G. H. Wang, J. E. S. Venart, and R. C. Prasad, Proc. 11th Symp. Thermophys. Props., June 23–27, Boulder, CO, USA, 1991.

  12. R. A. Perkins H. M. Roder C. A. Nietode Castro (1991) J. Res. Natl. Bur. Stand. 96 247 Occurrence Handle1:CAS:528:DyaK3MXlvFWjsrw%3D

    CAS  Google Scholar 

  13. R. A. Perkins D. G. Friend H. M. Roder C. A. Nietode Castro (1991) Int. J. Thermophys. 12 965 Occurrence Handle10.1007/BF00503513 Occurrence Handle1:CAS:528:DyaK3MXmsVWhu70%3D

    Article  CAS  Google Scholar 

  14. H. M. Roder R. A. Perkins A. Laesecke C. A. Nietode Castro (2000) J. Res. Natl. Bur. Stand. 105 221 Occurrence Handle1:CAS:528:DC%2BD3cXltlKlt78%3D

    CAS  Google Scholar 

  15. J. Millat M. Mustafa M. Ross W. A. Wakeham M. Zalaf (1987) Physica 145A 461 Occurrence Handle1:CAS:528:DyaL1cXislKmuw%3D%3D

    CAS  Google Scholar 

  16. J. Kestin R. Paul A. A. Clifford W. A. Wakeham (1980) Physica 100A 346

    Google Scholar 

  17. U. V. Mardolcar C. A. Nietode Castro W. A. Wakeham (1986) Int. J. Thermophys. 7 259 Occurrence Handle10.1007/BF00500153 Occurrence Handle1:CAS:528:DyaL28XitlWlu78%3D

    Article  CAS  Google Scholar 

  18. M. Yorizane S. Yoshimura H. Masuoka H. Yoshida (1983) Ind. Eng. Chem. Fundam. 22 454 Occurrence Handle10.1021/i100012a017 Occurrence Handle1:CAS:528:DyaL3sXlsVOitr8%3D

    Article  CAS  Google Scholar 

  19. N. Haran G. C. Maitland M. Mustafa W. A. Wakeham (1983) Ber. Bunsenges Phys. Chem. 87 657 Occurrence Handle1:CAS:528:DyaL3sXlsVOitr0%3D

    CAS  Google Scholar 

  20. A. Michels J. V. Sengers L. J. M. Klundert ParticleVan der (1963) Physica 29 149 Occurrence Handle1:CAS:528:DyaF3sXkvFGhug%3D%3D

    CAS  Google Scholar 

  21. A. A. Clifford P. Gray A. I. Johns A. C. Scott J. T. R. Watson (1981) J. Chem. Soc. Faraday Trans. I. 77 2679 Occurrence Handle10.1039/f19817702679 Occurrence Handle1:CAS:528:DyaL38XlvVynsQ%3D%3D

    Article  CAS  Google Scholar 

  22. H. M. Roder (1981) J. Res. Natl. Bur. Stand. 86 457 Occurrence Handle1:CAS:528:DyaL38XnsFChug%3D%3D

    CAS  Google Scholar 

  23. R. Mostert H. R. Berg Particlevan den P. S. Gulik Particlevan der (1990) Int. J. Thermophys. 11 497 Occurrence Handle10.1007/BF00500849

    Article  Google Scholar 

  24. A. A. Clifford J. Kestin W. A. Wakeham (1979) Physica 97A 287 Occurrence Handle1:CAS:528:DyaE1MXlvVansr0%3D

    CAS  Google Scholar 

  25. N. Imaishi J. Kestin W. A. Wakeham (1984) Physica 123A 52

    Google Scholar 

  26. M. J. Assael W. A. Wakeham (1981) J Chem Soc Faraday Trans. I 77 697 Occurrence Handle10.1039/f19817700697 Occurrence Handle1:CAS:528:DyaL3MXhs1elsrY%3D

    Article  CAS  Google Scholar 

  27. R. A. Perkins H. M. Roder D. G. Friend C. A. Nietode Castro (1991) Physica 173A 332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. S. Venart.

Additional information

Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Venart, J.E.S. Thermal Conductivity, Thermal Diffusivity, and Heat Capacity of Gaseous Argon and Nitrogen. Int J Thermophys 26, 325–372 (2005). https://doi.org/10.1007/s10765-005-4502-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-4502-0

Keywords

Navigation