Skip to main content
Log in

Are there Ubiquitous Parasite-driven Major Histocompatibility Complex Selection Mechanisms in Gray Mouse Lemurs?

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

A major goal of evolutionary biology is to understand how selection drives local adaptation. For example, the major histocompatibility complex (MHC) plays an important role in the immune system, and high levels of MHC variation are thought to be a form of adaptation in natural populations. Individual MHC composition may influence parasite resistance via advantages associated with 1) heterozygosity, because heterozygotes recognize a broader range of different antigens than homozygotes (heterozygote advantage); 2) highly variable amino acid sequences in MHC alleles, allowing individuals to bind a broader spectrum of parasite-derived peptides (divergent-alleles advantage, a mechanistic variant of the heterozygote advantage model); or 3) specific MHC alleles (rare allele advantage or frequency dependent selection). We investigated relationships between gastrointestinal nematode burden and both adaptive immune gene variability (MHC class II DRB) and neutral microsatellites in free-living gray mouse lemurs (Microcebus murinus) native to a dry deciduous forest population in western Madagascar to test these hypotheses. The individual MHC composition was related to parasite infestation. Specific MHC alleles were involved in parasite resistance and the presence of common alleles negatively influenced infestation intensity. We found no support for the heterozygote advantage hypothesis, but we did find support for the divergent-MHC allele advantage hypothesis: Individuals with very divergent MHC alleles carried fewer and less intense nematode infestations than individuals with more similar alleles in the more variable dry deciduous forest population. These results indicate that intestinal parasites are important selection pressures under natural conditions and suggest that different selection mechanisms are not mutually exclusive. In contrast, we detected no association between neutral overall individual genetic diversity (measured via 17 microsatellites) and parasite load. Finally, we investigated the ubiquity of parasite-driven selection mechanisms by comparing our results with a previous study of a mouse lemur population from the climatically different littoral forest in southeastern Madagascar, ca. 500 km away. This revealed that different specific MHC alleles were involved in parasite resistance in the 2 habitats, showing that gene-parasite associations are not consistent between populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo-Whitehouse, K., & Cunningham, A. A. (2006). Is MHC enough for understanding wildlife immunogenetics. Trends in Ecology & Evolution, 21, 433–438.

    Article  Google Scholar 

  • Altizer, S., Harvell, D., & Friedle, E. (2003). Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution, 18, 589–596.

    Article  Google Scholar 

  • Apanius, V., Penn, D., Slev, P., Ruff, L. R., & Potts, W. K. (1997). The nature of selection on the major histocompatibility complex. Critical Reviews in Immunology, 17, 179–224.

    PubMed  CAS  Google Scholar 

  • Babik, W., Durka, W., & Radwan, J. (2005). Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Molecular Ecology, 14, 4249–4257.

    Article  PubMed  CAS  Google Scholar 

  • Behnke, J. M., Barnard, C. J., Bajer, A., Bray, D., Dinmore, J., Frake, K., et al. (2001). Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology, 123, 401–414.

    Article  PubMed  CAS  Google Scholar 

  • Bernatchez, L., & Landry, C. (2003). MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? Journal of Evolutionary Biology, 16, 363–377.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, W. F. (1972). Evolutionary significance of the HL-A system. Nature, 237, 139–183.

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H., & Sorci, G. (2006). Complex Mhc-based mate choice in a wild passerine. Proceedings of the Royal Society B: Biological Sciences, 273, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Bontrop, R. E., Otting, N., Groot, N. G., & Doxiadis, G. G. M. (1999). Major histocompatibility complex class II polymorphisms in primates. Immunological Reviews, 167, 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. H., Jardetzky, T. S., Saper, M. A., Samraoui, B., Bjorkman, P. J., & Wiley, D. C. (1988). A hypothetical model of foreign antigen binding site of class II histocompatibility molecules. Nature, 332, 845–850.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., et al. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA DR1. Nature, 364, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Bryja, J., Charbonnel, N., Berthier, K., Galan, M., & Cosson, J. F. (2007). Density-related changes in selection pattern for major histocompatibility complex genes in fluctuating populations of voles. Molecular Ecology, 16, 5084–5097.

    Article  PubMed  CAS  Google Scholar 

  • Cassinello, J., Gomendio, M., & Roldan, E. S. (2001). Relationship between coefficient of inbreeding and parasite burden in endangered gazelles. Conservation Biology, 15, 1171–1174.

    Article  Google Scholar 

  • Charbonnel, N., & Pemberton, J. (2005). A long-term genetic survey of an ungulate population reveals balancing selection acting on MHC through spatial and temporal fluctuations in selection. Heredity, 95, 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Coltman, D. W., Pilkington, J. G., Smith, J. A., & Pemberton, J. M. (1999). Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution, 53, 1259–1267.

    Article  Google Scholar 

  • Consuegra, S., Megens, H.-J., Schaschl, H., Leon, K., Stet, R. J. M., & Jordan, W. C. (2005). Rapid evolution of the MH class I locus results in different allelic compositions in recently diverged populations of Atlantic salmon. Molecular Biology and Evolution, 22, 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  • Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2001). Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica, 78, 103–116.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, P. C., & Zinkernagel, R. M. (1975). Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature, 256, 50–52.

    Article  PubMed  CAS  Google Scholar 

  • Doxiadis, G. G. M., Otting, N., de Groot, N. G., & Bontrop, R. E. (2001). Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunological Reviews, 183, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Eberle, M., & Kappeler, P. M. (2002). Mouse lemurs in space and time: a test of the socioecological model. Behavioral Ecology and Sociobiology, 51, 131–139.

    Article  Google Scholar 

  • Eberle, M., & Kappeler, P. M. (2004a). Selected polyandry: female choice and inter-sexual conflict in a small nocturnal solitary primate (Microcebus murinus). Behavioral Ecology and Sociobiology, 57, 91–100.

    Article  Google Scholar 

  • Eberle, M., & Kappeler, P. M. (2004b). Sex in the dark: determinants and consequences of mixed male mating tactics in Microcebus murinus, a small solitary nocturnal primate. Behavioral Ecology and Sociobiology, 57, 77–90.

    Article  Google Scholar 

  • Eberle, M., & Kappeler, P. M. (2006). Family insurance: kin selection and cooperative breeding in a solitary primate (Microcebus murinus). Behavioral Ecology and Sociobiology, 60, 582–588.

    Article  Google Scholar 

  • Ekblom, R., Saether, S. A., Jacobsson, P. A. R., Fiske, P., Sahlman, T., Grahn, M., et al. (2007). Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Molecular Ecology, 16, 1439–1451.

    Article  PubMed  Google Scholar 

  • Figuera, F., O’hUigin, C., Tichy, H., & Klein, J. (1994). The origin of the primate MHC-DRB genes and allelic lineages as deduced from the study of prosimians. Journal of Immunology, 152, 4455–4465.

    Google Scholar 

  • Froeschke, G., & Sommer, S. (2005). MHC Class II DRB constitution and parasite load in the striped mouse, Rhabdomys pumilio, in the Southern Kalahari. Molecular Biology and Evolution, 22, 1254–1259.

    Article  PubMed  CAS  Google Scholar 

  • Ganzhorn, J. U., & Sorg, J. P. (1996). Ecology and economy of a tropical dry forest in Madagascar. In Primate Report 46. Goltze, Göttingen.

  • Ganzhorn, J. U., Lowry, P. P., Schatz, G. E., & Sommer, S. (2001). The biodiversity of Madagascar: one of the world’s hottest hotspots on its way out. Oryx, 35, 346–348.

    Google Scholar 

  • Garrigan, D., & Hedrick, P. W. (2003). Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution, 57, 1707–1722.

    PubMed  CAS  Google Scholar 

  • Gillespie, T. R., & Chapman, C. A. (2004). Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conservation Biology, 20, 441–448.

    Article  Google Scholar 

  • Go, Y., Satta, Y., Kawamoto, Y., Rakotoarisoa, G., Randrianjafy, A., Koyama, N., et al. (2003). Frequent segmental sequence exchanges and rapid gene duplication characterize the MHC class I genes in lemurs. Immunogenetics, 55, 450–461.

    Article  PubMed  CAS  Google Scholar 

  • Go, Y., Rakotoarisoa, G., Kawamoto, Y., Shima, T., Koyama, N., Randrianjafy, A., et al. (2005). Characterization and evolution of major histocompatibility complex class II genes in the aye-aye, Daubentonia madagascariensis. Primates, 46, 135–139.

    Article  PubMed  Google Scholar 

  • Goüy de Bellocq, J., Morand, S., & Feliu, C. (2002). Patterns of parasite species richness of Western Palaeartic micro-mammals: island effects. Ecography, 25, 173–183.

    Article  Google Scholar 

  • Hamilton, R., Boots, M., & Paterson, S. (2005). The effect of host heterogeneity and parasite intragenomic interactions on parasite population structure. Proceedings of the Royal Society B: Biological Sciences, 272, 1647–1653.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, B., & Westerberg, L. (2002). On the correlation between heterozygosity and fitness in natural populations. Molecular Ecology, 11, 2467–2474.

    Article  PubMed  Google Scholar 

  • Hapke, A., Eberle, M., & Zischler, H. (2003). Isolation of new microsatellite markers and application in four species of mouse lemurs (Microcebus spec.). Molecular Ecology Notes, 3, 205–208.

    Article  CAS  Google Scholar 

  • Harf, R., & Sommer, S. (2005). Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Molecular Ecology, 14, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, P. W. (1994). Evolutionary genetics of the major histocompatibility complex. The American Naturalist, 143, 945–964.

    Article  Google Scholar 

  • Hedrick, P. W. (1999). Balancing selection and MHC. Genetica, 104, 207–214.

    Article  CAS  Google Scholar 

  • Hedrick, P. W. (2002). Pathogen resistance and genetic variation at MHC loci. Evolution, 56, 1902–1908.

    PubMed  Google Scholar 

  • Horton, R., Gibson, R., Coggill, P., Miretti, M., Allcock, R., Almeida, J., et al. (2008). Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics, 60, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. L., & Hughes, M. K. (1995). Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics, 42, 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. L., & Nei, M. (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature, 335, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. L., & Nei, M. (1989). Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proceedings of the National Academy of Sciences of the United States of America, 86, 958–962.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. L., & Yeager, M. (1998). Natural selection at major histocompatibility complex loci of vertebrates. Annual Review of Genetics, 32, 415–435.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, J. I., Stien, A., Dallas, J. F., Halvorsen, O., Langvatn, R., & Albon, S. D. (2001). Contrasting regulation of fecundity in two abomasal nematodes of Svalbard reindeer (Rangifer tarandus platyrhynchus). Parasitology, 122, 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C. A., & Travers, P. (2002). Immunology. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Jarvi, S., Tarr, C. L., McIntosh, C. E., Atkinson, C. T., & Fleischer, R. C. (2004). Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae). Molecular Ecology, 13, 2157–2168.

    Article  PubMed  CAS  Google Scholar 

  • Jepson, A., Banya, W., Sisay-Joof, F., Hassan-King, M., Nunes, C., Bennett, S., et al. (1997). Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infection and Immunity, 65, 872–876.

    PubMed  CAS  Google Scholar 

  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munroe (Ed.), Mammalian protein metabolism (pp. 21–132). New York: Academic Press.

    Google Scholar 

  • Kasahara, M. (1999). The chromosomal duplication model of the major histocompatibility complex. Immunological Reviews, 167, 17–32.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, J., Walter, L., & Trowsdale, J. (2005). Comparative genomics of major histocompatibility complexes. Immunogenetics, 56, 683–695.

    Article  PubMed  CAS  Google Scholar 

  • Klein, J. (1986). Natural history of the major histocompatibility complex. New York: Wiley.

    Google Scholar 

  • Klein, J., & O’hUigin, C. (1994). MHC polymorphism and parasites. Philosophical Transactions of the Royal Society B: Biological Sciences, 346, 351–358.

    Article  CAS  Google Scholar 

  • Klein, J., Satta, Y., & O’hUigin, C. (1993). The molecular descent of the major histocompatibility complex. Annual Review of Immunology, 11, 269–295.

    Article  PubMed  CAS  Google Scholar 

  • Landry, C., Garant, D., Duchesne, P., & Bernatchez, L. (2001). ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proceedings of the Royal Society of London. Series B, 268, 1279–1285.

    Article  PubMed  CAS  Google Scholar 

  • Loiseau, C., Zoorob, R., Garnier, S., Birard, J., Federici, P., Julliard, R., et al. (2008). Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecology Letters, 11, 258–265.

    Article  PubMed  Google Scholar 

  • Meyer-Lucht, Y., & Sommer, S. (2005). MHC diversity and the association to nematode parasitism in the yellow necked mouse (Apodemus flavicollis). Molecular Ecology, 14, 2233–2243.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  • Nei, M., & Gojobory, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3, 418–426.

    PubMed  CAS  Google Scholar 

  • Nei, M., & Hughes, A. L. (1991). Polymorphism and evolution of the of the major histocompatibility complex loci in mammals. In R. K. Selander, A. G. Clark, & T. S. Whittam (Eds.), Evolution at the molecular level (pp. 222–247). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Nuismer, S. L., & Otto, S. P. (2004). Host-parasite interactions and the evolution of ploidy. Proceedings of the National Academy of Sciences of the United States of America, 101, 11036–11039.

    Article  PubMed  CAS  Google Scholar 

  • Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989a). Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 86, 2766–2770.

    Article  PubMed  CAS  Google Scholar 

  • Orita, M., Sekiya, T., & Hayashi, K. (1989b). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 5, 874–879.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, S., Wilson, A. C. C., & Pemberton, J. M. (1998). Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries). Evolution, 95, 3714–3719.

    CAS  Google Scholar 

  • Piertney, S. B., & Oliver, M. K. (2006). The evolutionary ecology of the major histocompatibility complex. Heredity, 96, 7–21.

    PubMed  CAS  Google Scholar 

  • Potts, W. K., & Wakeland, E. K. (1990). Evolution of diversity at the major histocompatibility complex. Trends in Ecology & Evolution, 5, 181–186.

    Article  Google Scholar 

  • Poulin, R. (2003). The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography, 30, 1609–1615.

    Article  Google Scholar 

  • Poulin, R., & Morand, S. (2004). Parasite biodiversity. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Schad, J., Sommer, S., & Ganzhorn, J. U. (2004). MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conservation Genetics, 5, 299–309.

    Article  CAS  Google Scholar 

  • Schad, J., Ganzhorn, J. U., & Sommer, S. (2005). Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution, 59, 439–450.

    PubMed  CAS  Google Scholar 

  • Schaschl, H., Goodman, S., & Suchentrunk, F. (2004). Sequence analysis of the MHC class II DRB alleles in Alpine chamois (Rupicapra r. rupicapra). Developmental and Comparative Immunology, 28, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Schaschl, H., Suchentrunk, F., Hammer, S., & Goodman, S. J. (2005). Recombination and the origin of sequence diversity in the DRB class II locus in chamois (Rupicapra ssp.). Immunogenetics, 57, 108–115.

    Article  PubMed  CAS  Google Scholar 

  • Schwensow, N., Fietz, J., Dausmann, K., & Sommer, S. (2007). Neutral versus adaptive variation in parasite resistance: importance of MHC-supertypes in a free-ranging primate. Heredity, 99, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Schwensow, N., Eberle, M., & Sommer, S. (2008). Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proceedings of the Royal Society B: Biological Sciences, 275, 555–564.

    Article  PubMed  Google Scholar 

  • She, J., Wakeland, E., & Boehme, S. (1992). The generation and maintenance of MHC class II gene polymorphism in rodents. Immunological Reviews, 113, 207–226.

    Google Scholar 

  • Slate, J., Kruuk, L., Marshall, T. C., Pemberton, J., & Clutton-Brook, T. (2000). Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elephus). Proceedings of the Royal Society B: Biological Sciences, 267, 1657–1662.

    Article  PubMed  CAS  Google Scholar 

  • Sloss, M. W., Kemp, R. L., & Zajak, A. (1994). Veterinary clinical parasitology. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Snell, G. H. (1968). The H-2 locus of the mouse: observations and speculations concerning its comparative genetics and its polymorphism. Folia Biologica, 14, 335–358.

    PubMed  CAS  Google Scholar 

  • Sommer, S. (2003). Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of noncoding and coding DNA of monogamous Madagasy rodent. Molecular Ecology, 12, 2845–2851.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, S. (2005a). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology, 2, doi:10.1186/1742-9994-2-16.

  • Sommer, S. (2005b). Major histocompatibility complex and mate choice in a monogamous rodent. Behavioral Ecology and Sociobiology, 58, 181–189.

    Article  Google Scholar 

  • Sommer, S., Schwab, D., & Ganzhorn, J. U. (2002). MHC diversity of endemic Malagasy rodents in relation to range contraction and social system. Behavioral Ecology and Sociobiology, 51, 214–221.

    Article  Google Scholar 

  • Soulsby, E. J. L. (1982). Helminths, arthropods and protozoa of domesticated animals. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Stear, M. J., Bishop, S. C., Doligalska, M., Duncan, J. L., Holmes, P. H., Irvine, J. I., et al. (1995). Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunology, 17, 643–652.

    Article  PubMed  CAS  Google Scholar 

  • Stear, M. J., Bairden, K., Duncan, J. L., McKellar, Q. A., Park, M., Strain, S., et al. (1997). How hosts control worms. Nature, 389, 27.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, N., & Nei, M. (1990). Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics, 124, 967–978.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Wakeland, E. K., Boehme, S., She, J. X., Lu, C. C., McIndoe, R. A., Cheng, I., et al. (1990). Ancestral polymorphism of MHC class II genes: divergent allele advantage. Immunologic Research, 9, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl, H., Hansson, B., Bensch, S., & Hasselquist, D. (2004). Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? Journal of Evolutionary Biology, 17, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Wimmer, B. (2000). Untersuchung der Paarungssysteme und Populationsstruktur von Lemuren an Coquerel’s Zwergmaki (Mirza coquereli), dem grauen Mauslemur (Microcebus murinus), dem Rotstirnmaki (Eulemur fulvus fulvus) und dem Larvensifaka (Propithecus verreauxi verreauxi), Universität München.

  • Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences: CABIOS, 13, 555–556.

    PubMed  CAS  Google Scholar 

  • Yang, Z., & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaption. Trends in Ecology & Evolution, 15, 496–503.

    Article  Google Scholar 

  • Yang, Z., Nielsen, M., Goldman, N., & Pederson, A.-M. K. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sides. Genetics, 155, 431–449.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the late B. Rakotosamimanana, J. G. Ganzhorn, P. M. Kappeler, R. Rasoloarison, and L. Razafimanantsoa, and the following institutions for their authorization or support of our work in Madagascar: Commission Tripartite of the Malagasy Government, Laboratoire de Primatologie et des Vertébrés de l´Université d´Antananarivo, Parc Botanique et Zoologique de Tsimbazaza, Ministère pour la Production Animale, Département des Eaux et Forêts, Centre de Formation Professionnelle Forestière (CFPF) de Morondava, German Primate Center. All research reported in this manuscript adhered to the legal requirements of Germany and Madagascar and complied with the protocols approved by the appropriate institutional Animal Care and Use Committee (Bundesministerium für Naturschutz (BfN), Germany; Ministère de l’Environnement et des Eaux et Forêts (MINEEF), Madagascar). Thoralf Borchardt helped with the field work. We thank I. Tomaschweski for technical assistance in the lab, Julia Schad for providing her photos of parasites of the littoral forests and assistance in the comparison of parasite data, and Catherine Reid for language corrections. Three anonymous reviewers and Joanna Setchell provided valuable comments on a previous version of the manuscript. This study was made possible by financial support of the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwensow, N., Eberle, M. & Sommer, S. Are there Ubiquitous Parasite-driven Major Histocompatibility Complex Selection Mechanisms in Gray Mouse Lemurs?. Int J Primatol 31, 519–537 (2010). https://doi.org/10.1007/s10764-010-9411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-010-9411-9

Keywords

Navigation