Skip to main content

Advertisement

Log in

Scaling of Size and Dimorphism in Primates I: Microevolution

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

I used a new quantitative genetics model to predict relationships between sex-specific body size and sex-specific relative variability when populations experience differences in relative intensity of sex-specific selection pressures—stronger selection on males or females—and direction of selection: increase or decrease in size. I combined Lande's (Evolution 34: 292–305) model for the response of sex-specific means to selection with a newly derived generalization of Bulmer's (Am. Nat. 105: 201–211) model for the response of relative variability to selection. I used this combined response model to predict correlations of sex-specific size and relative variability under various starting conditions, which one can compare to correlations between closely related primate populations. One can then compare predicted patterns of sex-specific selection pressures to social and ecological variables pertaining to those populations to identify likely forces producing microevolutionary change in sexual size dimorphism (SSD). I provide examples of this approach for populations representing three taxa: Papio anubis, Saguinus mystax, and Cercopithecus aethiops pygerythrus. Model results suggest that microevolutionary changes in SSD can result from greater selection acting on males or females, and that natural selection or natural and sexual selection combined, rather than sexual selection alone, may sometimes explain sex-specific selection differentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  • Abouheif, E., and Fairbairn, D. J. (1997). A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch's rule. Am. Nat. 149: 540–562.

    Article  Google Scholar 

  • Andersson, M. (1994). Sexual Selection. Princeton University Press, Princeton.

  • Berger, M. E. (1972). Live-weights and body measurements of olive baboons (Papio anubis) in the Laikipia District of Kenya. J. Mammal. 53: 404–406.

    Article  PubMed  CAS  Google Scholar 

  • Boinski, S., Sughrue, K., Selvaggi, L., Quatrone, R., Henry, M., and Cropp, S. (2002). An expanded test of the ecological model of primate social evolution: Competitive regimes and female bonding in three species of squirrel monkeys (Saimiri oerstedii, S. boliviensis, and S. sciureus). Behaviour 139: 227–261.

    Article  Google Scholar 

  • Box, H. O. (1997). Foraging strategies among male and female marmosets and tamarins (Callitrichidae): New perspectives in an underexplored area. Folia Primatol. 68: 296–306.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. H. (1995). Macroecology, University of Chicago Press, Chicago.

  • Brown, J. L. (1975). The Evolution of Behavior, Norton, New York.

  • Bulmer, M. G. (1971). The effect of selection on genetic variability. Am. Nat. 105: 201–211.

    Article  Google Scholar 

  • Bulmer, M. G. (1976). The effects of selection on genetic variability: A simulation study. Genet. Res. 28: 101–117.

    PubMed  CAS  Google Scholar 

  • Cabana, G., Frewin, A., Peters, R. H., and Randall, L. (1982). The effect of sexual size dimorphism on variations in reproductive effort of birds and mammals. Am. Nat. 120: 17–25.

    Article  Google Scholar 

  • Cheverud, J. M., Dow, M. M., and Leutenegger, W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: Sexual dimorphism in body weight among primates. Evolution 39: 1335–1351.

    Article  Google Scholar 

  • Clutton-Brock, T. H. (1977). Some aspects of intraspecific variation in feeding and ranging behaviour in primates. In Clutton-Brock, T. H. (ed.), Primate Ecology: Studies of Feeding and Ranging Behaviour in Lemurs, Monkeys and Apes, Academic Press, New York.

  • Clutton-Brock, T. H., Albon, S. D., and Guiness, F. E. (1988). Reproductive success in male red deer. In Clutton-Brock, T. H. (ed.), Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems, University of Chicago Press, Chicago, pp. 325–343.

  • Clutton-Brock, T. H., and Harvey, P. H. (1977). Primate ecology and social organization. J. Zool. (Lond.) 183: 1–39.

    Google Scholar 

  • Clutton-Brock, T. H., Harvey, P. H., and Rudder, B. (1977). Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269: 797–800.

    Article  PubMed  CAS  Google Scholar 

  • Cuninngham, E. J. A., and Birkhead, T. R. (1998). Sex roles and sexual selection. Anim. Behav. 56: 1311–1321.

    Article  Google Scholar 

  • Demment, M. W. (1983). Feeding ecology and the evolution of body size of baboons. Afr. J. Ecol. 21: 219–233.

    Article  Google Scholar 

  • Diamond, J. M. (1984). ‘Normal' extinctions of isolated populations. In Nitecki, M. H. (ed.), Extinctions, University of Chicago Press, Chicago, pp. 191–246.

  • Downhower, J. F. (1976). Darwin's finches and evolution of sexual dimorphism in body size. Nature 263: 558–563.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, S. B. (1994). Testing predictions of sexual selection. Am. Nat. 143: 848–869.

    Article  Google Scholar 

  • Emlen, S. T., and Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science 197: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. 28: 659–687.

    Article  Google Scholar 

  • Fairbairn, D. J., and Preziosi, R. (1994). Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider Aquaris remigis. Am. Nat. 144: 101–118.

    Article  Google Scholar 

  • Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, Longman, Essex, England.

  • Ford, S. M. (1980). Callitrichids as phyletic dwars and the place of the Callitrichidae in Platyrrhini. Primates 21: 31–43.

    Article  Google Scholar 

  • Ford, S. M. (1994). Evolution of sexual dimorphism in body weight in platyrrhines. Am. J. Primatol. 34: 221–244.

    Article  Google Scholar 

  • Gaulin, S. J. C., and Sailer, L. D. (1984). Sexual dimorphism in weight among the primates: The relative impact of allometry and sexual selection. Int. J. Primatol. 5: 515–535.

    Article  Google Scholar 

  • Gest, T. R., and Siegel, M. I. (1983). The relationship between organ weights and body weights, facial dimensions, and dental dimensions in a population of olive baboons (Papio cynocephalus anubis). Am. J. Phys. Anthropol. 61: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Gwynne, D. T. (1991). Sexual competition among females: What causes courtship-role reversal? Trends Ecol. Evol. 6: 118–121.

    Article  Google Scholar 

  • Gwynne, D. T., and Simmons, L. W. (1990). Experimental reversal of courtship roles in an insect. Nature 346: 171–174.

    Article  Google Scholar 

  • Hamilton, M. (1975). Variations in the sexual dimorphism of skeletal size in five populations of Amer-indians. Ph.D. Dissertation, University of Michigan.

  • Isbell, L. A. (1991). Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behav. Ecol. 2: 143–155.

    Article  Google Scholar 

  • Isbell, L. A., and Pruetz, J. D. (1998). Differences between vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas) in agonistic interactions between adult females. Int. J. Primatol. 19: 837–855.

    Article  Google Scholar 

  • Janson, C. H., and Chapman, C. A. (1999). Resources and primate community structure. In Fleagle, J. G., Janson, C. H., and Reed, K. E. (eds.), Primate Communities, Cambridge University Press, Cambridge, pp. 237–267.

  • Kamilar, J. (2003). The relationship between sexual dimorphism and male-female dietary niche separation in haplorhine primates. Am. J. Phys. Anthropol. (Suppl. 36): 126.

  • Kappeler, P. M. (1990). The evolution of sexual size dimorphism in prosimian primates. Am. J. Primatol. 21: 201–214.

    Article  Google Scholar 

  • Lande, R. (1980). Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34: 292–305.

    Article  Google Scholar 

  • Leutenegger, W. (1978). Scaling of sexual dimorphism in body size and breeding system in primates. Nature 272: 610–611.

    Article  PubMed  CAS  Google Scholar 

  • Leutenegger, W. (1980). Monogamy in callitrichids: A consequence of phyletic dwarfism? Int. J. Primatol. 1: 95–98.

    Article  Google Scholar 

  • Leutenegger, W., and Cheverud, J. (1982). Correlates of sexual dimorphism in primates: Ecological and size variables. Int. J. Primatol. 3: 387–402.

    Article  Google Scholar 

  • Leutenegger, W., and Cheverud, J. M. (1985). Sexual dimorphism in primates: The effects of size. In Jungers, W. L. (ed.), Size and Scaling in Primate Biology, Plenum Press, New York, pp. 33–50.

  • Lindenfors, P. (2002). Sexually antagonistic selection on primate size. J. Evol. Biol. 15: 595–607.

    Article  Google Scholar 

  • Lindenfors, P., and Tullberg, B. S. (1998). Phylogenetic analyses of primate size evolution: The consequences of sexual selection. Biol. J. Linn. Soc. Lond. 64: 413–447.

    Google Scholar 

  • Martin, R. D. (1992). Goeldi and the dwarfs: The evolutionary biology of the small New World monkeys. J. Hum. Evol. 22: 367–393.

    Article  Google Scholar 

  • Martin, R. D., Willner, L. A., and Dettling, A. (1994). The evolution of sexual size dimorphism in primates. In Short, R. V., and Balaban, E. (eds.), The Differences Between the Sexes, Cambridge University Press, Cambridge, pp. 159–200.

  • Maynard Smith, J. (1977). Parental investment: A prospective analysis. Anim. Behav. 25: 1–9.

    Article  Google Scholar 

  • Mitani, J. C., Gros-Louis, J., and Richards, A. F. (1996). Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. Am. Nat. 147: 966–980.

    Article  Google Scholar 

  • Mitchell, C. L., Boinski, S., and van Schaik, C. P. (1991). Competitive regimes and female bonding in two species of squirrel monkey (Saimiri oerstedi and S. sciureus). Behav. Ecol. Sociobiol. 28: 55–60.

    Article  Google Scholar 

  • Moya, L., Verdi, L., Bocanegra, G., and Rimachi, J. (1990). Analisis poblacional de Saguinus mystax (Spix 1823) (Callitrichidae) en la cuenca del Rio Yarapa, Loreto, Peru) La Primatologia en el Peru. Investigaciones Primatologicas (1973–1985), Ministerio de Agricultura, Lima, Peru, pp. 80–95.

  • Parker, G. A., and Simmons, L. W. (1996). Parental investment and the control of sexual selection: Predicting the direction of sexual competition. Proc. R. Soc. Lond. B 263: 315–321.

    Article  Google Scholar 

  • Petrie, M. (1983). Mate-choice in role-reversed species. In Bateson, P. (ed.), Mate Choice, Cambridge University Press, Cambridge, pp. 167–179.

  • Pianka, E. R. (1976). Natural-selection of optimal reproductive tactics. Am. Zool. 16: 775–784.

    Google Scholar 

  • Pianka, E. R., and Parker, W. S. (1975). Age-specific reproductive tactics. Am. Nat. 109: 453–464.

    Article  Google Scholar 

  • Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. Yearb. Phys. Anthrop. 44: 25–53.

    Article  Google Scholar 

  • Plavcan, J. M., and van Schaik, C. P. (1997). Intrasexual competition and body weight dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 103: 37–68.

    Article  PubMed  CAS  Google Scholar 

  • Popp, J. L. (1983). Ecological determinism in the life histories of baboons. Primates 24: 198–210.

    Article  Google Scholar 

  • Ralls, K. (1976). Mammals in which females are larger than males. Q. Rev. Biol. 51: 245–276.

    Article  PubMed  CAS  Google Scholar 

  • Ralls, K. (1977). Sexual dimorphism in mammals: Avian models and unanswered questions. Am. Nat. 111: 917–938.

    Article  Google Scholar 

  • Reeve, J. P., and Fairbairn, D. J. (1996). Sexual size dimorphism as a correlated response to selection on body size: An empirical test of the quantitative genetic model. Evolution 50: 1927–1938.

    Article  Google Scholar 

  • Rensch, B. (1959). Evolution Above the Species Level, Columbia University Press, New York.

  • Robertson, A. (1977). Artificial selection with a large number of linked loci. In Pollak, E., Kempthorne, O., and Bailey, T. B., Jr. (eds.), Proceedings of the International Conference on Quantitative Genetics, Iowa State University Press, Ames, IA, pp. 307–322.

  • Selander, R. K. (1966). Sexual dimorphism and differential niche utilization in birds. Condor 68: 113–151.

    Article  Google Scholar 

  • Selander, R. K. (1972). Sexual selection and dimorphism in birds. In Campbell, B. (ed.), Sexual Selection and the Descent of Man, Aldine, Chicago, pp. 180–230.

  • Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64: 419–461.

    Article  PubMed  CAS  Google Scholar 

  • Slatkin, M. (1984). Ecological causes of sexual dimorphism. Evolution 38: 622–630.

    Article  Google Scholar 

  • Smith, R. J., and Cheverud, J. M. (2002). Scaling of sexual dimorphism in body mass: A phylogenetic analysis of Rensch's rule in Primates. Int. J. Primatol. 23: 1095–1135.

    Article  Google Scholar 

  • Smith, R. J., and Jungers, W. L. (1997). Body mass in comparative primatology. J. Hum. Evol. 32: 523–559.

    Article  PubMed  CAS  Google Scholar 

  • Soini, P., and de Soini, M. (1990). Distribucion geografica y ecologia poblacional de Saguinus mystax. La Primatologia en el Peru. Investigaciones Primatologicas (1973–1985), Ministerio de Agricultura, Lima, Peru, pp. 272–313.

  • Sorensen, D., and Kennedy, B. W. (1984). Estimation of genetic variables from selected and unselected populations. J. Anim. Sci. 59: 1213–1223.

    Google Scholar 

  • Turner, T. R., Anapol, F., and Jolly, C. J. (1997). Growth, development, and sexual dimorphism in ververt monkeys (Cercopithecus aethiops) at four sites in Kenya. Folia Primatol. 103: 19–35.

    CAS  Google Scholar 

  • van der Werf, J., and de Boer, I. (1990). Estimation of additive genetic variance when base populations are selected. J. Anim. Sci. 68: 3124–3132.

    PubMed  CAS  Google Scholar 

  • van Hooff, J. A. R. A. M., and van Schaik, C. P. (1992). Cooperation in competition: The ecology of primate bonds. In Harcourt, A. H., and de Waal, F. M. B. (eds.), Coalitions and Alliances in Humans and Other Animals, Oxford University Press, Oxford, pp. 357–389.

  • van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In Standen, V., and Foley, F. A. (eds.), Comparative Socioecology: The Behavioral Ecology of Humans and Other Mammals, Blackwell Scientific Press, Oxford, pp. 195–218.

  • Webster, M. S. (1992). Sexual dimorphism, mating system and body size in new world blackbirds (Icterinae). Evolution 46: 1621–1641.

    Article  Google Scholar 

  • Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour 75: 262–300.

    Article  Google Scholar 

  • Wright, S. (1968). Evolution and the Genetics of Populations. Vol. 1: Genetic and Biometric Foundation, The University of Chicago Press, Chicago.

  • Zeng, Z.-B. (1988). Long term correlated response, interpopulation covariation, and interspecific allometry. Evolution 42: 363–374.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Joyce Parga for organizing a student symposium on sexual selection in primates at the American Society of Primatologists Meetings in Calgary, and Russ Tuttle for inviting us to present the results of that symposium here. I also thanks two anonymous reviewers, Roberto Delgado, Nate Dominy, Jeffery Froehlich, Andreas Koenig, Becca Lewis, Erin Vogel, and especially David Raichlen and Robert Scott for their comments on the presentation from which I developed this the article. A Liberal Arts Graduate Research Fellowship from the University of Texas at Austin and a National Science Foundation Dissertation Improvement Grant (BCS-0137344) funded the work in part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam D. Gordon.

Appendices

APPENDIX A: DERIVATION OF THE GENERALIZED BULMER EFFECT

Based on an analysis of Lande's quantitative genetic model for sexually dimorphic polygenic traits (Lande, 1980), Leutenegger and Cheverud (1982, 1985) present the expressions:

$$ \overline{\rm R}_{\rm M} = \left( \frac{1}{2} \right)\left( {h_{\rm M}^2 s_{\rm M} i_{\rm M} + h_{\rm M} h_{\rm F} r_{\rm a} s_{\rm M} i_{\rm F} } \right)$$
(A.1)

and

$$\overline{\rm R}_{\rm F} = \left(\frac {1}{2} \right)\left( {h_{\rm F}^2 s_{\rm F} i_{\rm F} + h_{\rm M} h_{\rm F} r_{\rm a} s_{\rm F} i_{\rm M} } \right)$$
(A.2)

where \(\overline{\rm R}\) is the mean response of the trait to selection, h 2 is the heritability of the trait, s is the phenotypic standard deviation, i is the selection intensity, and r a is genetic correlation between males and females for that trait. Subscripts indicate the sex to which the parameter refers (M, males; F, females). Heritability, selection intensity, and genetic correlation are all unitless values; thus the response to selection is measured in units of the standard deviation, i.e., the units used to measure the phenotypic trait.

The response (R) is the change in value of the continuous trait from one generation to the next; for example:

$$M^* = M + R_{\rm M} ,$$
(A.3)

where M is the variable for the continuous trait in the parental generation of males and M * is the variable for the trait in the offspring generation of males.

What follows is a derivation of the equations describing the sex-specific changes in variance between parental and offspring generations due to selection. Bulmer (1971) derived equations for the case when males and females do not differ in the expression of a continuous trait; here I derive a generalization that one can apply to all conditions ranging from absence of sex-linkage in the trait, i.e., Bulmer's model, where r a = 1, to complete sex-linkage of a trait (r a = 0). The male equation is derived here; the female equation is obtained simply by replacing M with F every time it appears, and vice versa.

The variable R M (distinct from the mean of this variable, \(\overline{\rm R}_{\rm M}\)) is the sum of two independent variables: the change in males due to selection on males in the parental generation (R Mm), and the change in males due to selection on females in the parental generation (R Mf). One can re-express Eq. (A.3) as follows:

$$M^* = M + R_{{\rm Mm}} + R_{{\rm Mf}} ,$$
(A.4)

This figure represents the sex-specific distribution of body mass for a population of males. The pre-selection distribution fills the entire area under the heavy black curve with mean \(\overline {\rm M}\) (heavy solid vertical line) and standard deviation s (light solid vertical line). Males that fall into the crosshatched portion of the distribution are selected against and do not reproduce. The post-selection distribution excludes the crosshatched area and has mean \(\overline {\rm M} ^\prime\) (heavy dashed line) and standard deviation s′ (light dashed line).

where

$$\overline{\rm R}_{{\rm Mm}} = \left(\frac{1}{2}\right)(h_{\rm M}^2 s_{\rm M} i_{\rm M} )$$
(A.5)

and

$$\overline{\rm R}_{{\rm Mf}} = \left(\frac{1}{2}\right)(h_{\rm M} h_{\rm F} r_{\rm a} s_{\rm M} i_{\rm F} )$$
(A.6)

Next, I follow Bulmer in modeling selection as the truncation of a distribution at a particular value (Fig. A.1), which allows the post-selection distribution to be described as

$${\rm M}' = {\rm M} + d{\rm M},$$
(A.7)

where M′ is the variable for the trait in post-selection males. The other variable in Eq. (A.7), dM, describes the difference between pre- and post-selection parental distributions. It is independent of M and has a mean of \(\overline {dM}\) and variance \(ds_M^2\), where

$$\overline {d{\rm M}} = \overline {{\rm M}'} - \overline {\rm M}$$
(A.8)

and

$$ds_{\rm M}^2 = s{'}_{\rm M}^2 - s_{\rm M}^2 .$$
(A.9)
Fig. A.1.
figure 6

Selection modeled as the truncation of a distribution after Bulmer (1971).

Selection intensity (i) is defined as the difference of the pre- and post-selection means, divided by the pre-selection standard deviation, so

$$i_{\rm M} = \frac{{\overline {d{\rm M}} }}{{s_{\rm M} }}$$
(A.10)

and

$$i_{\rm F} = \frac{{\overline {d{\rm F}} }}{{s_{\rm F} }}.$$
(A.11)

Replacing i M and i F in Eqs. (A.5) and (A.6) yields

$$\overline{\rm R}_{{\rm Mm}} = \left(\frac{1}{2}\right)\left( {h_{\rm M}^2 } \right)\left( {\overline {dM} } \right)$$
(A.12)

and

$$\overline{\rm R}_{{\rm Mf}} = \left(\frac{1}{2}\right)\left( {h_{\rm M} h_{\rm F} r_{\rm a} \frac{{s_{\rm M} }}{{s_{\rm F} }}} \right)\left( {\overline {dF} } \right).$$
(A.13)

One can now represent the independent variables R Mm and R Mf as

$$R_{{\rm Mm}} = \left[\left(\frac{1}{2}\right )h_{\rm M}^2\right]d{\rm M}$$
(A.14)

and

$$R_{{\rm Mf}} = \left( {\left(\frac{1}{2}\right)h_{\rm M} h_{\rm F} r_{a} \frac{{s_{\rm M} }}{{s_{\rm F} }}} \right)dF,$$
(A.15)

where R Mm and R Mf are expressed as linear transformations of the variables dM and dF, respectively. Their variances are as shown below:

$${\rm Var[}R_{{\rm Mm}} {\rm ]} = \left[\left( \frac{1}{4} \right)h_{\rm M}^4\right] ds_{\rm M}^2$$
(A.16)

and

$${\rm Var}\,[R_{{\rm Mf}} ] = \left[\left( \frac{1}{4}\right) h_{\rm M}^2 h_{\rm F}^2 r_{a}^2 \frac{{s_{\rm M}^2 }}{{s_{\rm F}^2 }}\right] ds_{\rm F}^2 .$$
(A.17)

Because the value of the continuous trait in the preselection parental males (M) is independent of the responses due to selection in the parental males and females (dM and dF, respectively), variance in offspring males is expressed as

$${\rm Var}\,{\rm [}{\rm M}^* {\rm ]} = {\rm Var}\,[{\rm M}] + {\rm Var}\,[{\rm R}_{{\rm Mm}} ] + {\rm Var}\,{\rm [}{\rm R}_{{\rm Mf}} {\rm ],}$$
(A.18)

which expands to

$$s_{\rm M}^{*2} = s_{\rm M}^2 + \left[\left( \frac{1}{4}\right) h_{\rm M}^4\right] ds_{\rm M}^2 + \left[\left( \frac{1}{4}\right) h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm M}^2 }}{{s_{\rm F}^2 }}\right] ds_{\rm F}^2 ,$$
(A.19)

where\(s_{\rm M}^{*2}\) is the variance of M *. The equivalent expression for female offspring is as follows:

$$s_{\rm F}^{*2} = s_{\rm F}^2 + \left[\left( \frac{1}{4}\right) h_{\rm F}^4\right] ds_{\rm F}^2 + \left[\left( \frac{1}{4}\right) h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm F}^2 }}{{s_{\rm M}^2 }}\right] ds_{\rm F}^2 .$$
(A.20)

Equations (A.19) and (A.20) describe the change in variance for a continuous trait in male and female offspring due to selection on the parental generation. If there is no sex-linkage in the trait and selection acts equally on both sexes, then males and females form a single distribution. In that case, r a equals 1, and one can remove the subscripts from all other parameters in Eqs. (A.19) and (A.20) because there is no distinction between female and male parameters. For such a situation, both equations reduce to

$$s^{*2} = s^2 + \left( {1/2h^4 } \right)ds^2 .$$
(A.21)

Equation (A.21) is exactly the equation Bulmer (1971) derived to describe the effect of selection on variance in a monomorphic population.

APPENDIX B: RELATIONSHIP OF MEAN RESPONSES TO RAW DATA

One can log-transform data for a continuous trait such as body size to produce scale-free variables, such that

$$M = \log [X_{\rm M} ]$$
(B.1)

and

$$F = \log [X_{\rm F} ],$$
(B.2)

where M and F are variables for male and female distributions as defined in Appendix A, and X is the size variable as originally measured, e.g., in kg. When the log transformation is performed, one can rewrite the mean sex-specific responses to selection (\(\overline{\rm R}_{\rm M}\) and\(\overline{\rm R}_{\rm F}\) from Eqs. (A.1) and (A.2)) as

$$\overline{\rm R}_{\rm M} = \overline {\log [X_{\rm M}^* ]} - \overline {\log [X_{\rm M} ]}$$
(B.3)

and

$$\overline{\rm R}_{\rm F} = \overline {\log [X_{\rm F}^* ]} - \overline {\log [X_{\rm F} ]} ,$$
(B.4)

where the asterisk refers to the offspring generation. Eqs. (B.3) and (B.4) are equivalent to

$$\overline{\rm R}_{\rm M} = \log \left[ {{\rm GM}_{{\rm XM}}^* } \right] - \log \left[ {{\rm GM}_{{\rm XM}} } \right]$$
(B.5)

and

$$\overline{\rm R}_{\rm F} = \log [{\rm GM}_{{\rm XF}}^* ] - \log [{\rm GM}_{{\rm XF}} ],$$
(B.6)

where GMXM and GMXF are the geometric means of the raw size measurements for males and females, respectively. Using the log rules, one can also express Eqs. (B.5) and (B.6) as

$$\overline{\rm R}_{\rm M} = \log \left[ {\frac{{{\rm GM}_{{\rm XM}}^* }}{{{\rm GM}_{{\rm XM}} }}} \right]$$
(B.7)

and

$$\overline{\rm R}_{\rm F} = \log \left[ {\frac{{{\rm GM}_{{\rm XF}}^* }}{{{\rm GM}_{{\rm XF}} }}} \right].$$
(B.8)

In Eqs. (B.7) and (B.8), \(\overline{\rm R}_{\rm M}\) and \(\overline{\rm R}_{\rm F}\) are shown to be the logarithms of ratios of offspring mean size divided by parent mean size. Replacing these ratios with the symbols p XM and p XF yields

$$\overline{\rm R}_{\rm M} = \log [p_{{\rm XM}} ]$$
(B.9)

and

$$\overline{\rm R}_{\rm F} = \log [p_{{\rm XF}} ]$$
(B.10)

where

$${\rm GM}_{{\rm XM}}^* = {\rm GM}_{{\rm XM}} \times p_{{\rm XM}}$$
(B.11)

and

$${\rm GM}_{{\rm XF}}^* = {\rm GM}_{{\rm XF}} \times p_{{\rm XF}} .$$
(B.12)

Thus the response variables\(\overline{\rm R}_{\rm M}\) and\(\overline{\rm R}_{\rm F}\) are shown to be the logarithms of scalars that describe the proportional change in sex-specific mean size between parent and offspring generations.

Leutenegger and Cheverud (1982, 1985) define the response of sexual dimorphism to sexual selection as the difference between the male and female responses, namely

$$\overline{\rm R}_{{\rm SD}} = \overline{\rm R}_{\rm M} - \overline{\rm R}_{\rm F} .$$
(B.13)

Substitution of Eqs. (B.7) and (B.8) into (B.13) yields

$$\overline{\rm R}_{{\rm SD}} = \log \left[ {\frac{{{\rm GM}_{XM}^* }}{{{\rm GM}_{XM} }}} \right] - \log \left[ {\frac{{{\rm GM}_{XF}^* }}{{{\rm GM}_{XF} }}} \right]$$
(B.14)

which can be shown to be equal to

$$\overline{\rm R}_{{\rm SD}} = \log \left[ {\frac{{{\rm (GM}_{{\rm XM}}^* /({\rm GM}_{{\rm XM}} ))}}{{{\rm (GM}_{{\rm XF}}^* /({\rm GM}_{{\rm XF}} ))}}} \right] = \log \left[ {\frac{{{\rm (GM}_{{\rm XM}}^* /({\rm GM}_{{\rm XF}}^* ))}}{{{\rm (GM}_{{\rm XM}} /({\rm GM}_{{\rm XF}} ))}}} \right].$$
(B.15)

One can calculate an index of sexual size dimorphism,\(\overline {{\rm SD}}\), which is the ratio of mean male size divided by mean female size:

$$\overline {{\rm SD}} = \frac{{{\rm GM}_{{\rm XM}} }}{{{\rm GM}_{{\rm XF}} }},$$
(B.16)

which allows one to express Eq. (B.15) as

$$\overline{\rm R}_{{\rm SD}} = \log \left[ {\frac{{\overline {{\rm SD}} ^* }}{{\overline {{\rm SD}} }}} \right];$$
(B.17)

i.e., the logged ratio of sexual size dimorphism in the offspring generation divided by sexual size dimorphism in the parental generation. One can replace the ratio with the symbol\(p_{\overline {{\rm SD}} }\), yielding

$$\overline{\rm R}_{{\rm SD}} = \log [p_{\overline {{\rm SD}} } ],$$
(B.18)

where

$$\overline {{\rm SD}} ^* = \overline {{\rm SD}} \times p_{\overline {{\rm SD}} } .$$
(B.19)

The response of sexual size dimorphism to selection (\(\overline {R_{{\rm SD}} }\)) is therefore the logarithm of a scalar that describes the proportional change in sexual size dimorphism between parent and offspring generations,

$$\overline {{\rm SD}} ^* = \overline {{\rm SD}} \times {\rm antilog}\left[ {\overline{\rm R}_{{\rm SD}} } \right].$$
(B.20)

APPENDIX C: DERIVATION OF THE COMBINED RESPONSE MODEL

Equations (A.1) and (A.2) in Appendix A describe the mean responses to selection of male and female size (\(\overline{\rm R}_{\rm M}\) and\(\overline{\rm R}_{\rm F}\), respectively) in terms of the genetic correlation between the sexes, sex-specific heritabilities, sex-specific standard deviations, and sex specific selection intensities. Leutenegger and Cheverud (1982 , 1985) use these equations to model the response of size dimorphism to conditions of pure sexual selection and pure variance dimorphism. Similarly, one can use the change in sex-specific variance, as described in Eqs. (A.19) and (A.20), to model the response of differences in sex-specific variance, i.e., variance dimorphism, to conditions of pure sexual selection and pure variance dimorphism. It can then be shown that these two sets of responses covary in predictable ways depending on the selective forces applied.

In Appendix B, I defined p XM, p XF, and \(p_{\overline {{\rm SD}} }\) as offspring:parent ratios of arithmetic mean size of log-transformed data, which are shown to be equivalent to ratios of the geometric mean of raw data. Here I define analogous ratios for offspring and parent variances of log-transformed data:

$$p_{s{\rm M}}^2 = \frac{{s_{\rm M}^{*2} }}{{s_{\rm M}^2 }},$$
(C.1)
$$p_{s{\rm F}}^2 = \frac{{s_{\rm F}^{*2} }}{{s_{\rm F}^2 }},$$
(C.2)

and

$$p_{s{\rm SD}}^2 = \frac{{\big(s_{\rm M}^{*2} \big/\big(s_{\rm F}^{*2} \big)\big)}}{{\big(s_{\rm M}^2 \big/\big(s_{\rm F}^2 \big)\big)}} = \frac{{\big(s_{\rm M}^{*2} \big/\big(s_{\rm M}^2 \big)\big)}}{{\big(s_{\rm F}^{*2} \big/\big(s_{\rm F}^2 \big)\big)}} = \frac{{p_{s{\rm M}}^2 }}{{p_{s{\rm F}}^2 }},$$
(C.3)

where the asterisk refers to the offspring generation. (Note: the square roots of these three ratios are equal to the offspring:parent ratios of standard deviation rather than variance.) One may define response variables as log-transformations of the three ratios as follows:

$$R_{s^2 {\rm M}} = \log \big[p_{s{\rm M}}^2 \big] = \log \left[ {\frac{{s_{\rm M}^{*2} }}{{s_{\rm M}^2 }}} \right] = \log \left[ {s_{\rm M}^{*2} } \right] - \log \left[ {s_{\rm M}^2 } \right],$$
(C.4)
$$R_{s^2 {\rm F}} = \log [p_{s{\rm F}}^2 ] = \log \left[ {\frac{{s_{\rm F}^{*2} }}{{s_{\rm F}^2 }}} \right] = \log \left[ {s_{\rm F}^{*2} } \right] - \log \left[ {s_{\rm F}^2 } \right],$$
(C.5)

and

$$R_{s^2 {\rm SD}} = \log \left[ {\frac{{p_{s{\rm M}}^2 }}{{p_{s{\rm F}}^2 }}} \right] = \log \left[ {p_{s{\rm M}}^2 } \right] - \log \left[ {p_{s{\rm F}}^2 } \right] = R_{s^2 {\rm M}} - R_{s^2 {\rm F}} ,$$
(C.6)

where\(R_{s^2 {\rm M}}\) is the response of male variance to selection,\(R_{s^2 {\rm F}}\) is the response of female variance to selection, and\(R_{s^2 {\rm SD}}\) is the response of variance dimorphism to selection. As Eq. (C.6) shows, these three response variables are related to each other in exactly the same way as the three response variables for the mean (Eq. (B.13) in Appendix B).

The three variance ratios of Eqs. (C.1)–(C.3) may be restated by substitution of Eqs. (A.19) and (A.20):

$$p_{s{\rm M}}^2 = \frac{{s_{\rm M}^2 + \left(\frac{1}{4}h_{\rm M}^4\right) ds_{\rm M}^2 + \left( \frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm M}^2 }}{{s_{\rm F}^2 }}\right) ds_{\rm F}^2 }}{{s_{\rm M}^2 }},$$
(C.7)
$$p_{s{\rm F}}^2 = \frac{{s_{\rm F}^2 + \left( \frac{1}{4}h_{\rm F}^4\right) ds_{\rm F}^2 + \left( \frac{1}{4}h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm F}^2 }}{{s_{\rm M}^2 }}\right) ds_{\rm M}^2 }}{{s_{\rm F}^2 }},$$
(C.8)

and

$$p_{s{\rm M}}^2 = \frac{{s_{\rm M}^2 + \left(\frac{1}{4} h_{\rm M}^4 \right)ds_{\rm M}^2 + \left( \frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm M}^2 }}{{s_{\rm F}^2 }}\right) ds_{\rm F}^2 }}{{s_{\rm F}^2 + \left( \frac{1}{4} h_{\rm F}^4\right) ds_{\rm F}^2 + \left( \frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm F}^2 }}{{s_{\rm M}^2 }}\right) ds_{\rm M}^2 }} \times \frac{{s_{\rm F}^2 }}{{s_{\rm M}^2 }}.$$
(C.9)

One can also express Eq. (C.9) as

$$p_{s{\rm M}}^2 = \frac{{s_{\rm M}^2 s_{\rm F}^2 + \left(\frac{1}{4} h_{\rm M}^4\right) s_{\rm F}^2 ds_{\rm M}^2 + \left(\frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm M}^2 }}{{s_{\rm F}^2 }}\right) s_{\rm F}^2 ds_{\rm F}^2}}{{s_{\rm M}^2 s_{\rm F}^2 + \left(\frac{1}{4} h_{\rm F}^4\right) s_{\rm M}^2 ds_{\rm F}^2 + \left(\frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm F}^2 }}{{s_{\rm M}^2 }}\right) s_{\rm M}^2 ds_{\rm M}^2 }}.$$
(C.10)

Substituting Eq. (C.10) into Eq. (C.4) yields

$$R_{s^2 {\rm SD}} = \log \left[ {\frac{{s_{\rm M}^2 s_{\rm F}^2 + \left( \frac{1}{4} h_{\rm M}^4\right) s_{\rm F}^2 ds_{\rm M}^2 + \left( \frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm M}^2 }}{{s_{\rm F}^2 }}\right) s_{\rm F}^2 ds_{\rm F}^2 }}{{s_{\rm M}^2 s_{\rm F}^2 + \left( \frac{1}{4} h_{\rm F}^4\right) s_{\rm M}^2 ds_{\rm F}^2 + \left( \frac{1}{4} h_{\rm M}^2 h_{\rm F}^2 r_{\rm a}^2 \frac{{s_{\rm F}^2 }}{{s_{\rm M}^2 }}\right) s_{\rm M}^2 ds_{\rm M}^2 }}} \right],$$
(C.11)

a description of the response of relative variability ratio in the offspring generation to selection, expressed in terms of parameters drawn exclusively from the parental generation. One can obtain a similar description of the response of mean sexual size dimorphism by substituting Eqs. (A.1) and (A.2) into (B.13) (this equation appears in Leutenegger and Cheverud, 1982, 1985):

$$\overline{\rm R}_{{\rm SD}} = \left( {\frac{1}{2}} \right)\left[ {\left( {h_{\rm M}^2 s_{\rm M} i_{\rm M} - h_{\rm F}^2 s_{\rm F} i_{\rm F} } \right) + h_{\rm M} h_{\rm F} r_{\rm a} \left( {s_{\rm M} i_{\rm F} - s_{\rm F} i_{\rm M} } \right)} \right].$$
(C.12)

Equations (C.11) and (C.12) jointly comprise the combined response model. Given the input parameters for these two equations, all of which are drawn only from the parental population, one can calculate the response of male:female ratios of sex-specific mean size and sex-specific variance for one or more generations. Constraining the input parameters to conditions consistent with various selective forces, e.g., sexual selection with selection for increasing size in both sexes, variance dimorphism with selection for decreasing size in females and no selection on males, etc., generates the set of possible responses of\(R_{s^2 {\rm SD}}\) and\(\overline {R_{{\rm SD}} }\) for those forces, which in turn allows for the identification of categories of outcomes that must correspond to particular selective forces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, A.D. Scaling of Size and Dimorphism in Primates I: Microevolution. Int J Primatol 27, 27–61 (2006). https://doi.org/10.1007/s10764-005-9003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-005-9003-2

KEY WORDS

Navigation