Skip to main content
Log in

Potential for Acceleration of Simulation of Dynamic Processes in Oversized Gyrotrons by Means of Using 2.5D Particle-in-Cell Method

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Simulation of gyrotrons using the particle-in-cell method predominantly requires 3D calculations. At large oversize factors of the interaction space, it leads to lengthy calculation times. We show that under certain conditions, the dimensionality of the problem can be reduced and 2.5D PIC simulations can be applied. Using the example of a 170 GHz gyrotron with TE28,12 operating mode, we study the influence of the external signal on the noise level in the output radiation under conditions of fluctuations of the accelerating voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Sabchevski, M. Glyavin, S. Mitsudo, Y. Tatematsu, T. Idehara, J Infrared Milli Terahz Waves 42, 715 (2021), https://doi.org/10.1007/s10762-021-00804-8

    Article  Google Scholar 

  2. S. Mizojiri, K. Shimamura, M. Fukunari, S. Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu, T. Saito, IEEE Microwave and Wireless Comp. Lett. 28, 834 (2018), https://doi.org/10.1109/LMWC.2018.2860248

    Article  Google Scholar 

  3. S.V. Kutsaev, B. Jacobson, A.Yu. Smirnov, T. Campese, V.A. Dolgashev, V. Goncharik, M. Harrison, A. Murokh, E. Nanni, J. Picard, M. Ruelas, and S.C. Schaub, Phys. Rev. Appl. 11, 034052 (2019), https://doi.org/10.1103/PhysRevApplied.11.034052

    Article  Google Scholar 

  4. M.A.K. Othman, J. Picard, S. Schaub, V.A. Dolgashev, S.M. Lewis, J. Neilson, A. Haase, S. Jawla, B. Spataro, R.J. Temkin, S. Tantawi, and E.A. Nanni, Appl. Phys. Lett. vol. 117, 073502 (2020), https://doi.org/10.1063/5.0011397

    Article  Google Scholar 

  5. M.K.A. Thumm, G.G. Denisov, K. Sakamoto, M.Q. Tran, Nucl. Fusion 59, 073001 (2019), https://doi.org/10.1088/1741-4326/ab2005

    Article  Google Scholar 

  6. A. G. Litvak, G. G. Denisov and M. Y. Glyavin, IEEE J. Microw. 1, 260 (2021), https://doi.org/10.1109/JMW.2020.3030917

    Article  Google Scholar 

  7. M. Fukunari, K. Komurasaki, Y. Nakamura, Y. Oda, and K. Sakamoto,  J. Energy and Power Eng. 11, 361 (2017), https://doi.org/10.17265/1934-8975/2017.06.001

  8. K. Komurasaki, K. Kuniyoshi, Int. J. Aerospace Eng. 2018, 9247429 (2018), https://doi.org/10.1155/2018/9247429

    Article  Google Scholar 

  9. Alberti S, Braunmueller F, Tran TM, Genoud J, Hogge J-Ph, Tran MQ, Ansermet J-Ph (2013) Phys Rev Lett 111, 205101 https://doi.org/10.1103/PhysRevLett.111.205101

  10. E. V. Blokhina, S. P. Kuznetsov, and A. G. Rozhnev, “High-dimensional chaos in a gyrotron,” IEEE Trans. Electron Devices, vol. 54, no. 2, pp. 188-193, Feb. 2007, https://doi.org/10.1109/TED.2006.888757..

    Article  Google Scholar 

  11. A. E. Fedotov, R. M. Rozental, O. B. Isaeva and A. G. Rozhnev, IEEE Electron Dev. Lett. 42, 1073 (2021), https://doi.org/10.1109/LED.2021.3078761.

    Article  Google Scholar 

  12. N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, A. E. Fedotov, I. V. Zotova, and V. P. Tarakanov, Phys. Rev. Lett. 119, 034801 (2017). https://doi.org/10.1103/PhysRevLett.119.034801

    Article  Google Scholar 

  13. R.M. Rozental, I. V. Zotova, N. S. Ginzburg, A. S. Sergeev, and V. P. Tarakanov, J. IR MM THz Waves 40, 150 (2019). https://doi.org/10.1007/s10762-018-0561-8.

    Article  Google Scholar 

  14. N. Kumar and A. Bera, IEEE Trans. Electron Dev. 67, 3369 (2020), https://doi.org/10.1109/TED.2020.3000975.

    Article  Google Scholar 

  15. I. Bandurkin, A. Fedotov, M. Glyavin, T. Idehara, A. Malkin, V. Manuilov, A. Sergeev, A. Tsvetkov, V. Zaslavsky, I. Zotova, IEEE Trans. Electron Dev. 67, 4432 (2020), https://doi.org/10.1109/TED.2020.3012524

    Article  Google Scholar 

  16. MC. Blank, KA. Avramidis, S. Illy, C. Wu, Eighteenth International Vacuum Electronics Conference (IVEC) 1 (2017) https://doi.org/10.1109/IVEC.2017.8289628

  17. C. An, D. Zhang, J. Zhang, S. Li, J. Liu, Asia-Pacific Microwave Conference (APMC) 1079 (2018) https://doi.org/10.23919/APMC.2018.8617302

  18. Lin M, Smithe DN (2019) International Vacuum Electronics Conference (IVEC) 1 https://doi.org/10.1109/IVEC.2019.8745190

  19. Neudorfer J, Stock A, Schneider R, Roller S, Munz C (2013) IEEE Trans Plasma Sci 41, 87 https://doi.org/10.1109/TPS.2012.2229298

  20. N. S. Ginzburg, A. S. Sergeev, and I. V. Zotova, Phys. Plasmas 22, 033101 (2015), https://doi.org/10.1063/1.4913672.

    Article  Google Scholar 

  21. K. A. Yakunina, A. P. Kuznetsov, and N. M. Ryskin, Phys. Plasmas 22, 113107 (2015), https://doi.org/10.1063/1.4935847.

    Article  Google Scholar 

  22. V.L. Bakunin, G.G. Denisov, and Y.V. Novozhilova, J Infrared Milli Terahz Waves 42, 117 (2021), https://doi.org/10.1007/s10762-020-00758-3

    Article  Google Scholar 

  23. M. Yu. Glyavin, G. G. Denisov, M. L. Kulygin, M. M. Melnikova, Yu. V. Novozhilova, and N. M. Ryskin, Radiophys. Quantum El. 58, 673 (2016), https://doi.org/10.1007/s11141-016-9639-0.

    Article  Google Scholar 

  24. I. V. Zotova, G. G. Denisov, N. S. Ginzburg, A. S. Sergeev, and R. M. Rozental, Phys. Plasmas 25, 013104 (2018), https://doi.org/10.1063/1.5008666.

    Article  Google Scholar 

  25. R. M. Rozental, I. V. Zotova, M. Yu. Glyavin, A. E. Fedotov, N. S. Ginzburg, A. S. Sergeev, and V. P. Tarakanov, Radiophys. Quantum El. 63, 363 (2020), https://doi.org/10.1007/s11141-021-10061-3.

    Article  Google Scholar 

  26. M. M. Melnikova, A. V. Tyshkun, and N. M. Ryskin, J Infrared Milli Terahz Waves 42, 446 (2021), https://doi.org/10.1007/s10762-021-00768-9

    Article  Google Scholar 

  27. RM. Rozental1, NS.Ginzburg, MYu. Glyavin, AS. Sergeev, IV. Zotova, Phys. Plasmas 22 093118 (2015), https://doi.org/10.1063/1.4931746

  28. A. B. Adilova, N. M. Ryskin, Radiophys. Quantum. El. 63, 703 (2021), https://doi.org/10.1007/s11141-021-10091-x.

    Article  Google Scholar 

  29. M. Fukunari, G. S. Nusinovich, Y. Tatematsu, T. Saito and Y. Yamaguchi, IEEE Trans. Plasma Sci. 46, 2848 (2018), https://doi.org/10.1109/TPS.2018.2849379.

    Article  Google Scholar 

  30. Fedotov AE, Rozental RM, Zotova1 IV, Ginzburg NS, Sergeev AS, Tarakanov VP, Glyavin MYu, Idehara T (2018) J Infrared Milli Terahz Waves 39, 975 https://doi.org/10.1007/s10762-018-0522-2

  31. H. Wu, R. Liou and A. H. McCurdy, IEEE Trans. Plasma Sci. 24, 606 (1996), https://doi.org/10.1109/27.532943.

    Article  Google Scholar 

  32. J. J. Barroso, K. G. Kostov and R. A. Correa, IEEE Trans. Plasma Sci. 27, 384 (1999), https://doi.org/10.1109/27.772265.

    Article  Google Scholar 

  33. R. M. Rozental, N. I. Zaitsev, I. S. Kulagin, E. V. Ilyakov and N. S. Ginzburg, IEEE Trans. Plasma Sci. 32, 418 (2004), https://doi.org/10.1109/TPS.2004.829831.

    Article  Google Scholar 

  34. A. A. Bogdashov, M. Yu. Glyavin, R. M. Rozental, A. P. Fokin, and V. P. Tarakanov, Tech. Phys. Lett. 44, 221 (2018), https://doi.org/10.1134/S1063785018030069.

    Article  Google Scholar 

  35. M. Yu Glyavin , I. Ogawa, I. V. Zotova , N. S. Ginzburg, A. P. Fokin, A. S. Sergeev, R. M. Rozental, V. P. Tarakanov, A. A. Bogdashov, T. O. Krapivnitskaia, V. N. Manuilov, T. Idehara, IEEE Trans. Plasma Sci. 46, 2465 (2018), https://doi.org/10.1109/TPS.2018.2797480.

    Article  Google Scholar 

  36. M.A. Moiseev, V.E. Zapevalov, and N.A. Zavolsky, Int. J. Infrared Millim. Waves 22, 813 (2001). https://doi.org/https://doi.org/10.1023/A:1014954012067.

    Article  Google Scholar 

  37. VE. Myasnikov, MV. Agapova, AN. Kuftin, VE. Zapevalov, GG. Denisov, VI. Ilin, LM. Belnova, AV. Chirkov, APh. Gnedenkov, AG. Litvak, VI. Malygin, VO. Nichiporenko, VN. Novikov, LG. Popov, IN. Roy, VG. Rukavishnikova, EV. Sokolov, EA. Soluyanova, EM. Tai, SV. Usachev, 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1 (2013), https://doi.org/10.1109/IRMMW-THz.2013.6665557

  38. SE. Tsimring, Electron Beams and Microwave Vacuum Electronics. John Wiley & Sons, Inc. (2007).

  39. I. V. Zotova, N. S. Ginzburg, G. G. Denisov, R. M. Rozental, and A. S. Sergeev, Radiophys. Quant. El. 58, 684 (2016), https://doi.org/10.1007/s11141-016-9640-7.

    Article  Google Scholar 

  40. P. Woskov, H. Bindslev, F. Leipold, F. Meo, S. K. Nielsen, E. L. Tsakadze, S. B. Korsholm, J. Scholten, C. Tito, E. Westerhof, J. W. Oosterbeek, F. Leuterer, F. Monaco, M. Muenich, and D. Wagner, Rev. Sci. Instr. 77, 10E524 (2006), https://doi.org/10.1063/1.2347694.

    Article  Google Scholar 

  41. S.-T. Han, R.G. Griffin, K.-N. Hu, C.-G. Joo, C. D. Joye, J. R. Sirigiri, R. J. Temkin, A. C. Torrezan, P. P. Woskov, IEEE Trans. Plasma Sci. 35, 559 (2007), https://doi.org/10.1109/TPS.2007.896931

    Article  Google Scholar 

  42. L. Krier, KA. Avramidis, H. Braune, G. Gantenbein, S. Illy, Z. Ioannidis, J. Jelonnek, HP. Laqua, S. Marsen, D. Moseev, F. Noke, IGr. Pagonakis, T. Ruess,3, T. Rzesnicki, T. Stange, M. Thumm, RC. Wolf, 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 1 (2021), https://doi.org/10.1109/IRMMW-THz50926.2021.9566847

  43. G.G. Denisov, EPJ Web Conf 149, 01001 (2017), https://doi.org/10.1051/epjconf/201714901001.

    Article  Google Scholar 

  44. D. Fasel, F. Albajar, T. Bonicelli, A. Perez, L. Rinaldi, U. Siravo, L. Sita, G. Taddia, Fusion Eng. Design 86, 872 (2011), https://doi.org/10.1016/j.fusengdes.2011.02.017.

    Article  Google Scholar 

  45. S. X. Ma, M. Zhang, L. L. Xia, D. H. Chen, Z. Zeng, X. L. Zhang, C. L. Wang, and K. X. Yu, IEEE Trans. Plasma Sci. 42, 656 (2014), https://doi.org/10.1109/TPS.2014.2300506.

    Article  Google Scholar 

  46. H. Braune, P. Brand, R. Krampitz, W. Leonhardt, D. Mellein, G. Michel, G. Mueller, J. Sachtleben, M. Winkler, and the W7-X ECRH teams at IPP IPF and FZK,  J Phys Conf Ser 25, 008 (2005), https://doi.org/10.1088/1742-6596/25/1/008

  47. B. Razavi, IEEE J. Solid-State Circuits 39, 1415 (2004), https://doi.org/10.1109/JSSC.2004.831608.

    Article  Google Scholar 

  48. C. Liu, H. Huang, Z. Liu, F. Huo and K. Huang, IEEE Trans. Plasma Sci. 44, 1291 (2016), https://doi.org/10.1109/TPS.2016.2565564.

    Article  Google Scholar 

  49. S.-T. Han, D. Kim, J. Kim and J.-R. Yang, IEEE Access 8, 145881 (2020), https://doi.org/10.1109/ACCESS.2020.3013651.

    Article  Google Scholar 

  50. V. A. Flyagin, A. V. Gaponov, I. Petelin and V. K. Yulpatov, IEEE Trans. Microwave Theory Tech. 25, 514 (1977), https://doi.org/10.1109/TMTT.1977.1129149.

    Article  Google Scholar 

  51. A.V. Chirkov, G.G. Denisov, and A.N. Kuftin, Appl. Phys. Lett. 106, 263501 (2015), https://doi.org/10.1063/1.4923269.

    Article  Google Scholar 

  52. V. L. Bakunin, Yu. M. Guznov, G. G. Denisov, N. I. Zaitsev, S. A. Zapevalov, A. N. Kuftin, Yu. V. Novozhilova, A. P. Fokin, A. V. Chirkov, A. S. Shevchenko, Radiophys. Quantum El 62, 481 (2019), https://doi.org/10.1007/s11141-020-09994-y.

    Article  Google Scholar 

  53. X. Zhou and A. S. Daryoush, IEEE Microwave and Guided Wave Lett. 3, 244 (1993), https://doi.org/10.1109/75.242227.

    Article  Google Scholar 

  54. H. Ikeda and Y. Itoh, IEEE Transactions on Microwave Theory and Tech. 66, 3315 (2018), https://doi.org/10.1109/TMTT.2018.2836393.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) Project through the Program “Development of engineering, technology and scientific research in the field of atomic energy until 2024” under Grant 0030–2021-0027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The physical model used in the KARAT code is based on the Maxwell equations complemented with boundary conditions for the fields at the edges of the simulation area and material equations binding the currents with field strength values. For simulations, the simulation area is split into separate cells of the orthogonal uniform mesh parallel to coordinate axes. Charge carriers are discrete with charge values equal to integer number of the elementary charge.

Electric and magnetic fields are split into two terms:\(\mathrm{E}=\widetilde{\mathbf{E}}+\overline{\mathbf{E} }\), \(\mathbf{B}=\widetilde{\mathbf{B}}+\overline{\mathbf{B} }\), where \(\widetilde{\mathbf{E}}\) and \(\widetilde{\mathbf{B}}\) are the time-dependent fields generated by the currents and the charges present in the system while \(\overline{\mathbf{E} }\) and \(\overline{\mathbf{B} }\) are the quasi-static external fields. Variable fields are described by Maxwell equations:

$$\begin{array}{l}\nabla \widetilde{\mathbf{B}}=\frac{4\pi }{c}\mathbf{J}+\frac{1}{c}\frac{\partial \widetilde{\mathbf{E}}}{\partial t},\\ \nabla \widetilde{\mathbf{E}}=-\frac{1}{c}\frac{\partial \widetilde{\mathbf{B}}}{\partial t},\\ \mathbf{J}=\frac{1}{\Delta V}\sum_{s}{q}_{s}{{\varvec{v}}}_{s}\end{array}$$
(4)

where c is the speed of light, \({{\varvec{v}}}_{s}\) is the velocity of the sth particle, \(\Delta V\) is the cell volume, and qs is the part of the charge in the cell.

In turn, the motion of each particle is described by Lorentz equations:

$$\frac{d{\varvec{p}}}{dt}=q\left(\mathbf{E}+\left[\frac{\mathbf{v}}{c}\times \mathbf{B}\right]\right)$$
(5)

where \(\mathbf{p}=\mathrm{m}\mathbf{v}\gamma\) is the particles’ momentum, v is its velocity, γ is the relativistic mass factor, and m and q are the rest mass and the charge of the particle.

This system of equations allows for self-consistent simulation of the particles’ dynamics in the external and induced electromagnetic fields.

In order to undertake calculations almost in any frequency band, the variables are normalized within the software by the characteristic spatial scale R determined based on the dimensions of the simulated area and the assigned number of numerical mesh points:

$$\begin{array}{c}\begin{array}{cc}{\mathbf{v}}^{*}=\mathbf{v}/c={\varvec{\upbeta}},& {t}^{*}=t\bullet c/R,\end{array}\\ \begin{array}{ccc}{\mathbf{E}}^{*}=\mathbf{E}\frac{eR}{{mc}^{2}},& {\mathbf{B}}^{*}=\mathbf{B}\frac{eR}{{mc}^{2}},& {\mathbf{J}}^{*}=\mathbf{J}\frac{{eR}^{2}}{{mc}^{3}}\end{array}\end{array}$$
(6)

The equations for variable fields and momenta take the form:

$$\begin{array}{c}\left\{\begin{array}{c}\nabla {\widetilde{\mathbf{B}}}^{\boldsymbol{*}}=4\pi {\mathbf{J}}^{\boldsymbol{*}}+\frac{\partial {\widetilde{\mathbf{E}}}^{\boldsymbol{*}}}{\partial {{\varvec{t}}}^{\boldsymbol{*}}}\\ \nabla {\widetilde{\mathbf{E}}}^{\boldsymbol{*}}=-\frac{\partial {\widetilde{\mathbf{B}}}^{\boldsymbol{*}}}{\partial {{\varvec{t}}}^{\boldsymbol{*}}}\end{array}\right.\\ \frac{{d\mathbf{p}}^{*}}{dt}={\mathbf{E}}^{*}+\left[{\varvec{\upbeta}}{\mathbf{B}}^{*}\right]\end{array}$$
(7)

Hereafter, we drop the (*) sign in the dimensionless variables.

Maxwell equations are solved using the finite-difference scheme with step-over on the hexagonal meshes with half-step shift. In cylindrical coordinates \(\left(R\theta z\right)\), under the assumption of axial symmetry \(\partial /\partial \theta =0\), the simulated 2D area in r-z plane is covered by a hexagonal mesh with cells of hr and hz dimensions. For simulations of weakly relativistic gyrotrons operating at TE-type modes, with TM modes neglected, it is sufficient to use the differential equations in the difference form only for three field components, Eθ, Br, Bz:

$$\begin{array}{l}\frac{{\left({\widetilde{E}}_{\theta }\right)}_{i,k}^{n+1}-{\left({\widetilde{E}}_{\theta }\right)}_{i,k}^{n}}{\tau }=\frac{{\left({\widetilde{B}}_{r}\right)}_{i,k+1/2}^{n+1/2}-{\left({\widetilde{B}}_{r}\right)}_{i,k-1/2}^{n+1/2}}{{h}_{z}}-\frac{{\left({\widetilde{B}}_{r}\right)}_{i,k+1/2}^{n+1/2}-{\left({\widetilde{B}}_{r}\right)}_{i,k-1/2}^{n+1/2}}{{h}_{r}}--4\pi {\left({\mathrm{J}}_{\theta }\right)}_{i,k}^{n+1/2}\\ \frac{{\left({\widetilde{B}}_{r}\right)}_{i,k-1/2}^{n+1/2}-{\left({\widetilde{B}}_{r}\right)}_{i,k-1/2}^{n-1/2}}{\tau }=\frac{{\left({\widetilde{E}}_{\theta }\right)}_{i,k}^{n}-{\left({\widetilde{E}}_{\theta }\right)}_{i,k-1}^{n}}{{h}_{z}}\\ \frac{{\left({\widetilde{B}}_{z}\right)}_{i-1/2,j-1/2,k}^{n+1/2}-{\left({\widetilde{B}}_{z}\right)}_{i-1/2,j-1/2,k}^{n-1/2}}{\tau }=-\frac{{r}_{i}{\left({\widetilde{E}}_{\theta }\right)}_{i,k}^{n}-{r}_{i-1}{\left({\widetilde{E}}_{\theta }\right)}_{i-1,k}^{n}}{{r}_{i-1/2}{h}_{r}}\end{array}$$
(8)

Here, i and k are the numbers of mesh cells along r and z. To take into account the singularity at r = 0, we use the equality \({\left.{B}_{\theta }\right|}_{r=0}=0\) and obtain:

$$\frac{{\left({\widetilde{E}}_{z}\right)}_{i,k-1/2}^{n+1}-{\left({\widetilde{E}}_{z}\right)}_{i,k-1/2}^{n}}{\tau }=\frac{4}{{h}_{r}}{\left({\widetilde{B}}_{\theta }\right)}_{1+1/2, k-1/2,}^{n+1/2}-4\pi {\left({J}_{z}\right)}_{i,k-1/2}^{n+1/2}$$
(9)

Relativistic equations of macroparticles’ motion are integrated according to the following scheme:

$$\begin{array}{c}\frac{{\mathbf{p}}_{1}-{\mathbf{p}}^{n-1/2}}{\tau /2}={\mathbf{E}}^{n},\frac{{\mathbf{p}}_{2}-{\mathbf{p}}_{1}}{\tau }=\left[\left({\mathbf{p}}_{1}+{\mathbf{p}}_{2}\right)\frac{\mathbf{B}}{2}\right],\\ \frac{{\mathbf{p}}^{n-1/2}-{\mathbf{p}}_{2}}{\tau /2}={\mathbf{E}}^{n},{\mathrm{r}}^{n=1}={\mathrm{r}}^{\mathrm{n}}+{\mathrm{v}}^{n+1/2}\end{array}$$
(10)

where \({\mathbf{p}}_{1,2}\) are the intermediate momentum values:

$$\begin{array}{c}\begin{array}{ccc}{\mathbf{p}}_{1}={\mathbf{p}}^{n-1/2}+\frac{\tau }{2}{\mathbf{E}}^{n},& {\mathbf{p}}_{2}={\mathbf{p}}_{1}+a\left[{\mathbf{p}}_{3}{\mathbf{B}}^{^{\prime}}\right],& \begin{array}{cc}{\mathbf{p}}_{3}={\mathbf{p}}_{1}+\frac{\tau }{2}\left[{\mathbf{p}}_{1}{\mathbf{B}}^{^{\prime}}\right],& {{\mathbf{p}}_{1}}^{n+1/2}={\mathbf{p}}_{2}+\frac{\tau }{2}{\mathbf{E}}^{n},\end{array}\end{array}\\ \begin{array}{cc}{\mathbf{B}}^{^{\prime}}=\frac{{\mathbf{B}}^{n+1/2}+{\mathbf{B}}^{n-1/2}}{2}\times \frac{1}{\sqrt{1+{p}^{2}}},& a=\frac{2}{1+{\left({\mathrm{B}}^{^{\prime}}\tau /2\right)}^{2}}\end{array}\end{array}$$
(11)

To eliminate the singularity, for the particles at the system’s axis, the next-step coordinates of the particle are evaluated in the rectangular Cartesian coordinate system in the following way:

$$\begin{array}{c}\begin{array}{cc}{x}^{n+1}={x}^{n}+{\tau v}_{x}^{n+1/2};& {y}^{n}={\tau v}_{y}^{n+1/2}\end{array}\\ {v}_{x}^{n+1/2}\equiv {v}_{r}^{n+1/2};{v}_{y}^{n+1/2}\equiv {v}_{\varphi }^{n+1/2};{x}^{n}={r}^{n};{y}^{n}=0\end{array}$$
(12)

Back in cylindrical coordinates, new values of the radius vector and the velocity components are evaluated as

$$\begin{array}{c}r^{n+1}=\left[x^{n+1}+y^{n+1}\right]^{1/2},\\v_r^{n+1/2}=v_x^{n+1/2}\cos\;\alpha+v_y^{n+1/2}\sin\;\alpha;v_\varphi^{n+1/2}=-v_x^{n+1/2}\sin\;\alpha+v_y^{n+1/2}\cos\;\alpha;\end{array}$$
(13)

where \(\sin\;\alpha=y^{n+1}/r^{n+1};\cos\alpha=x^{n+1}/r^{n+1}\). In the case when \({r}^{n+1}=0\), it is assumed that \(\cos\;\alpha=1\) and \(\sin\;\alpha=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozental, R.M., Tarakanov, V.P. Potential for Acceleration of Simulation of Dynamic Processes in Oversized Gyrotrons by Means of Using 2.5D Particle-in-Cell Method. J Infrared Milli Terahz Waves 43, 479–492 (2022). https://doi.org/10.1007/s10762-022-00862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00862-6

Keywords

Navigation