Skip to main content
Log in

Improvement of Mode Selectivity of High-Harmonic Gyrotrons by Using Operating Cavities with Short Output Reflectors

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

An important problem in realization of gyrotrons operating at high cyclotron harmonics is discrimination of parasitic oscillations excited at lower harmonics. In this paper, we propose to use an operating cavity with a short output irregularity providing a partial reflection of the operating wave. This allows decreasing the length of the cavity with no considerable change in both the operating electron current and the efficiency of the gyrotron operation. At the same time, since the output irregularity weakly reflects parasitic low-frequency waves, the reduction in the length of the cavity leads to a significant increase in the starting currents of the parasitic near-cutoff waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron. 10, 794 (1967).

    Article  Google Scholar 

  2. G. S. Nusinovich, Introduction to the Physics of Gyrotrons. Baltimore: The Johns Hopkins Univ. Press, 2004.

    Google Scholar 

  3. W. H. Urbanus, W. A. Bongers, C. A. J. Van Der Geer, P. Manintveld, J. Plomp, J. Pluygers, A. J. Poelman, P. H. M. Smeets, A. G. A. Verhoeven, V. L. Bratman, G. G. Denisov, A. V. Savilov, M. Yu. Shmelyov, M. Caplan, A. A. Varfolomeev, S. V. Tolmachev, and S. N. Ivanchenkov, Phys. Rev. E 59, 6058 (1999).

    Article  Google Scholar 

  4. N. A. Vinokurov, J. Infrared, Millimeter THz Waves 32, 1123 (2011).

    Article  Google Scholar 

  5. V. L. Bratman, I. V. Bandurkin, B. S. Dumesh, A. E. Fedotov, Yu. K. Kalynov, N. G. Kolganov, V. N. Manuilov, F. S. Rusin, S. V. Samsonov, and A. V. Savilov, AIP Conf. Proc. 807, 356 (2006).

    Article  Google Scholar 

  6. T. Idehara, H. Tsuchiya, O. Watanabe, L. Agusu, and S. Mitsudo, Int. J. of Infrared and Millimeter Waves 27, 319 (2006).

    Article  Google Scholar 

  7. M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci. 34, 524 (2006).

    Article  Google Scholar 

  8. T. Saito, T. Nakano, H. Hoshizuki, K. Sakai, Y. Tatematsu, S. Mitsudo, I. Ogawa, T. Idehara, V.E. Zapevalov, Int. J. of Infrared and Millimeter Waves, 28, 1063 (2007).

    Article  Google Scholar 

  9. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, Phys. Rev. Lett. 100, 015101 (2008).

    Article  Google Scholar 

  10. V. L. Bratman, M. Yu. Glyavin, Yu. K. Kalynov, A. G. Litvak, A. G. Luchinin, A. V. Savilov, and V. E. Zapevalov, J. Infrared Millimeter THz Waves 32, 371 (2011).

    Article  Google Scholar 

  11. A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, IEEE Trans. Electron Dev. 58, 2777 (2011).

    Article  Google Scholar 

  12. T. Idehara and S. P. Sabchevski, J. Infrared Millimeter THz Waves 33, 667 (2012).

    Article  Google Scholar 

  13. M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, Appl. Phys. Lett. 101, 153503 (2012).

    Article  Google Scholar 

  14. S. Alberti, J.-Ph. Ansermet, K. A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J.-Ph. Hogge, A. Macor, E. de Rijk, M. da Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin, Phys. Plasmas 19, 123102 (2012).

    Article  Google Scholar 

  15. V. L. Bratman, Y. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett. 102, 245101 (2009).

    Article  Google Scholar 

  16. I. V. Bandurkin, Y. K. Kalynov, and A. V. Savilov, IEEE Trans. Electron Devices 62, 2356 (2015).

    Article  Google Scholar 

  17. H. Jory, “Investigation of electronic interaction with optical resonators for microwave generation and amplification,” Varian Associates, Palo Alto, CA, USA, R&D Tech. Rep. ECOM-01873-F, 1968.

  18. D. B. McDermott, N. C. Luhmann, Jr., A. Kupiszewski, and H. R. Jory, Phys. Fluids 26, 1936 (1983).

  19. K. Irwin, W. W. Destler, W. Lawson, J. Rodgers, E. P. Scannell, and S. T. Spang, J. Appl. Phys. 69, 627 (1991).

    Article  Google Scholar 

  20. V. L. Bratman, A. E. Fedotov, Y. K. Kalynov, V. N. Manuilov, M. M. Ofitserov, S. V. Samsonov, and A. V. Savilov, IEEE Trans. Plasma Sci. 27, 456 (1999).

    Article  Google Scholar 

  21. V. Zapevalov, T. Idehara, S. Sabchevski, K. Ohashi, V. Manuilov et al, Int. J. of Infrared and Millimeter Waves 24, 253 (2003).

    Article  Google Scholar 

  22. V. E. Zapevalov, V. N. Manuilov, and Sh. E. Tsimring, Radiophys. Quant. Electron. 34, 174 (1991).

    Article  Google Scholar 

  23. Sh. Liu, X. Yuan, W. Fu, Y. Yan, Y. Zhang, H. Li, and R. Zhong, Phys. Plasmas 14, 103113 (2007).

    Article  Google Scholar 

  24. M. Glyavin, V. Manuilov, and T. Idehara, Phys. Plasmas 20, 123303 (2013).

    Article  Google Scholar 

  25. A.V. Savilov, V. L. Bratman, A.D.R. Phelps, and S.V. Samsonov, Physical Review E 62, 4207 (2000).

    Article  Google Scholar 

  26. V. L. Bratman, A. E. Fedotov, N. G. Kolganov, S.V. Samsonov, and A.V. Savilov. Phys. Rev. Lett 85, 3424 (2000).

    Article  Google Scholar 

  27. I.V. Bandurkin, V.L. Bratman, A.V. Savilov, S.V. Samsonov, A.B. Volkov, Physics of Plasmas 16, 070701 (2009).

    Article  Google Scholar 

  28. A. V. Savilov and G. S. Nusinovich, Phys. Plasmas 14, 053113 (2007).

    Article  Google Scholar 

  29. V. E. Zapevalov, S. A. Malygin, V. G. Pavelyev, and Sh. E. Tsimring, Radiophys. Quant. Electron. 27, 846 (1984).

    Article  Google Scholar 

  30. I. V. Bandurkin, Yu. K. Kalynov, and A. V. Savilov, Phys. Plasmas 17, 073101 (2010).

    Article  Google Scholar 

  31. V. I. Belousov, S. N. Vlasov, N. A. Zavolsky, V. E. Zapevalov, E. V. Koposova, S. Yu. Kornishin, A. N. Kuftin, M. A. Moiseev, and V. I. Khizhnyak, Radiophys. Quant. Electron. 57, 446 (2014).

    Article  Google Scholar 

  32. Y. K. Kalynov, I. V. Osharin, and A. V. Savilov, Phys. Plasmas 23, 053116 (2016).

    Article  Google Scholar 

  33. I.V. Bandurkin, M.Y. Glyavin, S.V. Kuzikov, P.B. Makhalov, I.V. Osharin, A.V.Savilov, IEEE Transactions on Electron Devices 64, 3893 (2017).

    Article  Google Scholar 

  34. Wagner, D., G. Gantenbein, W. Kasparek, M. Thumm. Int. J. Infrared and Millimeter Waves, 16, 1481–1489 (1995).

    Article  Google Scholar 

  35. Wagner, D., G. Gantenbein, W. Kasparek, J. Pretterebner, M. Thumm. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, Japan, 1994, Contributed Paper W1.7, JSAP Catalog Number: AP941228, pp. 289–290.

  36. V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Opt. Commun. 30, 409 (1979).

    Article  Google Scholar 

  37. M. Yu. Glyavin, Yu. S. Oparina, A. V. Savilov, and A. S. Sedov, Physics of Plasmas 23, 093108 (2016).

    Article  Google Scholar 

  38. G. S. Nusinovich and O. Dumbrajs, J. Infr. Millim. Terahertz Waves vol. 37, 111( 2016).

  39. I.V. Bandurkin, Y.K. Kalynov, P.B. Makhalov, I.V. Osharin, A.V. Savilov, I.V. Zheleznov, IEEE Transactions on Electron Devices 64, 300 (2017).

    Article  Google Scholar 

  40. I. V. Bandurkin and A. V. Savilov, Phys. Plasmas 22, 063113 (2015)

    Article  Google Scholar 

  41. N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881 (1986).

  42. V. L. Bratman, A. V. Savilov, and T.H. Chang, Radiophys. Quantum Electron., 58, No. 9, 660 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Savilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oparina, Y.S., Savilov, A.V. Improvement of Mode Selectivity of High-Harmonic Gyrotrons by Using Operating Cavities with Short Output Reflectors. J Infrared Milli Terahz Waves 39, 595–613 (2018). https://doi.org/10.1007/s10762-018-0499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0499-x

Keywords

Navigation