Skip to main content
Log in

Increase of Gyrotron Output Power at High-Order Axial Mode Through an After-Cavity Excitation of the Next Transverse Mode

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In the experimental study on the frequency tuning of a double-beam gyrotron, an unexpected abrupt increase of the output power was observed for some magnetic field values corresponding to the excitation of high-order axial modes (HOAM). This effect can be explained through an after-cavity interaction of the spent but bunched electron beam with the neighboring transverse mode which has the same azimuthal but the next (i.e., greater by one) radial index with respect to the operating mode. The calculations show that under certain conditions the cyclotron synchronism between the electron beam and the next radial mode occurs in the extended region of an output cone, while the bunching of the spent electron beam is responsible for the excitation of this mode. The influence of some additional factors such as reflections of both modes from the output window, electron velocity spread, and magnetic field profile was studied numerically. It was shown that reflections, mode transformation, and velocity spread can enhance the effect of an abrupt power increase and reduce the starting current of the operating mode. The discovered after-cavity interaction can be either useful for a power increase at the HOAM operation of the frequency-tunable gyrotron or harmful for high cyclotron harmonic operation due to an expansion of the zone of fundamental cyclotron resonance mode excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Thumm, J Infrared Millim Terahz Waves. (2020) https://doi.org/10.1007/s10762-019-00631-y

  2. T. Idehara, S. Sabchevski, M. Glyavin, S. Mitsudo, Appl. Sci. (2020) https://doi.org/10.3390/app10030980

  3. J.H. Booske, Phys. Plasmas. (2008) https://doi.org/10.1063/1.2838240

  4. T. Idehara, I. Ogawa, Y. Shimizu, T. Tatsukawa, J Infrared Millim Terahz Waves. (1998) https://doi.org/10.1023/A:1022668205783

  5. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, R.J. Temkin, IEEE T Plasma Sci. (2006) https://doi.org/10.1109/TPS.2006.875769

  6. M.V. Kartikeyan, E. Borie, M. Thumm, J Infrared Millim Terahz Waves. (2007) https://doi.org/10.1007/s10762-007-9242-8

  7. T.Saito, N. Yamada, S. Ikeuti, S. Ogasawara, Y. Tatematsu, R. Ikeda, I. Ogawa, T. Idehara, V.N. Manuilov, T. Shimozuma, S. Kubo, M. Nishiura, K. Tanaka, K. Kawahata, Phys. Plasmas. (2012) https://doi.org/10.1063/1.4729316

  8. Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Kawase, R. Ichioka, I. Ogawa, T. Saito, T. Fujiwara, J Infrared Millim Terahz Waves. (2014) https://doi.org/10.1007/s10762-014-0048-1

  9. G.S. Nusinovich, Int. J Electron. (1981) https://doi.org/10.1080/00207218108901349

  10. O. Dumbrajs, G.S. Nusinovich, IEEE T Plasma Sci. (1992) https://doi.org/10.1109/27.142812

  11. E. Borie, B. Jödicke, Int. J Electron. (1991) https://doi.org/10.1080/00207219208925611

  12. G.F. Brand, T. Idehara, T. Tatsukawa, I. Ogawa, Int. J Electron. (1991) https://doi.org/10.1080/00207219208925612

  13. S. Mitsudo, M. Glyavin, E. Khutoryan, I. Bandurkin, T. Saito, Y. Ishikawa, V. Manuilov, I. Zotova, A. Fedotov, A. Kuleshov, S. Sabchevski, Y. Tatematsu, V. Zaslavsky, T. Idehara, J Infrared Millim Terahz Waves. (2019) https://doi.org/10.1007/s10762-019-00629-6

  14. T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuilov, V. Zaslavsky, I. Zotova, A. Sedov, Rev. Sci. Instrum. (2017) https://doi.org/10.1063/1.4997994

  15. N.S. Ginzburg, M.Yu. Glyavin, A.M. Malkin, V. Manuilov, R. Rozental, A. Sedov, A. Sergeev, V. Zaslavsky, I. Zotova, T. Idehara, IEEE T Plasma Sci. (2016) https://doi.org/10.1109/TPS.2016.2585307

  16. V.N. Manuilov, M.Yu. Glyavin, A.S. Sedov, V.Yu Zaslavsky, T. Idehara, J Infrared Millim Terahertz Waves. (2015) https://doi.org/10.1007/s10762-015-0209-x

  17. V.E. Zapevalov, Sh.E. Tsimring, Radiophys. Quantum Electron. (1990) https://doi.org/10.1007/BF01039240

  18. V.E. Zapevalov, V.N. Manuilov, O.V. Malygin, S.E. Tsimring, Radiophys. Quantum Electron. (1994) https://doi.org/10.1007/BF01054034

  19. S. Liu, X. Yuan, D. Liu, Y. Yan, Y. Zhang, H. Li, R. Zhong, Phys. Plasmas. (2007) https://doi.org/10.1063/1.2784766

  20. U. Singh, A. Kumar, N. Kumar, N. Kumar, B. Pratap, L.P. Purohit, A.K. Sinha, Fusion Eng. Des. (2012) https://doi.org/10.1016/j.fusengdes.2012.04.024

  21. K.A. Avramidis, Z.C. Ioannidis, S. Kern, A. Samartsev, I.Gr. Pagonakis, I.G. Tigelis, J. Jelonnek, Phys. Plasmas. (2015) 10.1063/1.4919924

  22. V.E. Zapevalov, M.A. Moiseev, Radiophys. Quantum Electron. (2004) https://doi.org/10.1023/B:RAQE.0000047243.18212.1d

  23. O. Dumbrajs, T. Idehara, J Infrared Millim Terahz Waves. (2012) https://doi.org/10.1007/s10762-012-9934-6

  24. O.V. Sinitsyn, G.S. Nusinovich, Phys. Plasmas. (2009) https://doi.org/10.1063/1.3072978

  25. O.V. Sinitsyn, G.S. Nusinovich, T.M. Antonsen Jr., Phys. Plasmas. (2010) https://doi.org/10.1063/1.3469577

  26. G. Gantenbein, E. Borie, Int. J Infrared Millim. Waves. (1990) https://doi.org/10.1007/bf01010136

  27. A.R. Choudhury, Investigations of after cavity interaction in gyrotrons including the effect of non-uniform magnetic field. (Repository KITopen, 2020), https://publikationen.bibliothek.kit.edu/1000037030. Accessed 26 November 2020

  28. M. Blank, K. Felch, B.G. James, P. Borchard, P. Cahalan, T.S. Chu, H. Jory, B.G. Danly, B. Levush, J.P. Calame, K.T. Nguyen, D.E. Pershing, IEEE T Plasma Sci. (2002) https://doi.org/10.1109/TPS.2002.801658

  29. I.I. Antakov, I.G. Gachev, E.V. Sokolov, Proc. Conf.: Intense Microwave-Pulses III. (1995) 10.1117/12.218576

  30. G. Nusinovich, B. Danly, B. Levush, Phys. Plasmas. (1997) https://doi.org/10.1063/1.872115

  31. M. Glyavin, I. Ogawa, I. Zotova, N. Ginzburg, A. Fokin, A. Sergeev, R. Rozental, V. Tarakanov, A. Bogdashov, T. Krapivnitskaia, V. Manuilov, T. Idehara, IEEE T Plasma Sci. (2018) https://doi.org/10.1109/TPS.2018.2797480

  32. M.Y. Glyavin, G.G. Denisov, M.L. Kulygin, Y.V. Novozhilova, Tech. Phys. Lett. (2015) https://doi.org/10.1134/S106378501507007X

  33. M.M. Melnikova, A.G. Rozhnev, N.M. Ryskin, A.V. Tyshkun, M.Y. Glyavin, Y.V. Novozhilova, 2015 IEEE Int. Vacuum Electron. Conf. (2015) https://doi.org/10.1109/ivec.2015.7223752

    Book  Google Scholar 

  34. M.Y. Glyavin, V.E. Zapevalov, Int. J Infrared Millim. Waves. (1998) https://doi.org/10.1023/A:1022655025562

  35. G.S. Nusinovich, Introduction to The Physics of Gyrotrons. (Johns Hopkins University Press, Baltimore, 2004)

    Google Scholar 

  36. O. Dumbrajs and G. S. Nusinovich, Phys. Plasmas 19, 103112 (2012)

    Article  Google Scholar 

  37. O. Dumbrajs, T. Saito, Y. Tatematsu, Y. Yamaguchi, Phys. Plasmas. (2016) https://doi.org/10.1063/1.4962575

  38. E. Khutoryan, T. Idehara, M. Melnikova, N. Ryskin, O. Dumbrajs, J Infrared Millim Terahertz Waves. (2017) https://doi.org/10.1007/s10762-017-0378-x

  39. O. Dumbrajs, G.S. Nusinovich, Phys. Plasmas. (2018) https://doi.org/10.1063/1.5019974

  40. G.S. Nusinovich, O. Dumbrajs, IEEE T Plasma Sci. (1996) https://doi.org/10.1109/27.532945

  41. O. Dumbrajs, G.S. Nusinovich, Phys. Plasmas. (2016) https://doi.org/10.1063/1.4961962

  42. K.A. Lukin, I.V. Yakubenko, Sov. J. Commun. Technol. Electron. 34, 6 (1989)

    Google Scholar 

  43. G.S. Nusinovich, O. Dumbrajs, Phys. Plasmas. (1995) https://doi.org/10.1063/1.870982

  44. V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, M.I. Petelin, P.S. Strelkov, Int. J Electron. (1981) https://doi.org/10.1080/00207218108901356

  45. I. Bandurkin, M. Glyavin, T. Idehara, A. Savilov, IEEE T Electron Dev. (2019) https://doi.org/10.1109/TED.2019.2905047

  46. A. Kuleshov, E. Khutoryan, S. Kishko, S. Ponomarenko, M. Glyavin, I. Bandurkin, V. Manuilov, A. Fedotov, T. Saito, Y. Ishikawa, Y. Tatematsu, S. Mitsudo, T. Idehara, IEEE T Electron Dev. (2019) https://doi.org/10.1109/ted.2019.2957873

  47. I. Bandurkin, A. Fedotov, M. Glyavin, T. Idehara, A. Malkin, V. Manuilov, A. Sergeev, A. Tsvetkov, V. Zaslavsky, I. Zotova, IEEE T Electron Dev. (2020) https://doi.org/10.1109/ted.2020.3012524

  48. I.V. Bandurkin, Y.K. Kalynov, A.V. Savilov, Phys. Plasmas. (2013) https://doi.org/10.1063/1.4775083

  49. A.V. Maksimenko, V.I. Shcherbinin, A.V. Hlushchenko, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE T Electron Dev. (2019) https://doi.org/10.1109/ted.2019.2893888

  50. V.L Bakunin, G.G. Denisov, Y.V. Novozhilova, Radiophys. Quantum Electron. (2016) https://doi.org/10.1007/s11141-016-9663-0

  51. M.M. Chumakova, S.A. Usacheva, M.Y. Glyavin, Y.V. Novozhilova, N.M. Ryskin, IEEE T Plasma Sci. (2014) https://doi.org/10.1109/tps.2014.2331235

  52. A.B. Adilova, S.A. Gerasimova, N.M. Ryskin, EPJ Web Conf. (2017) https://doi.org/10.1051/epjconf/201714904029

  53. R.M. Rozental, N.S. Ginzburg, M.Yu. Glyavin, A.S. Sergeev, I.V. Zotova, Phys. Plasmas. (2015) https://doi.org/10.1063/1.4931746

Download references

Acknowledgements

The development of double-beam gyrotron has been carried out in the framework of the collaboration of the International Consortium for Development of High-Power Terahertz Science and Technology (visit: http://fir.u-fukui.ac.jp/Website_Consortium/). The study of the high-order axial mode excitation in the double-beam gyrotron was supported by the Russian Science Foundation under grant no. 18-12-00394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Khutoryan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutoryan, E., Kuleshov, A., Kishko, S. et al. Increase of Gyrotron Output Power at High-Order Axial Mode Through an After-Cavity Excitation of the Next Transverse Mode. J Infrared Milli Terahz Waves 42, 684–700 (2021). https://doi.org/10.1007/s10762-021-00798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00798-3

Keywords

Navigation