Skip to main content
Log in

Room-Temperature Oscillation of Resonant Tunneling Diodes close to 2 THz and Their Functions for Various Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Compact and coherent source is a key component for various applications of the terahertz (THz) wave. We report on our recent results of THz oscillators using resonant tunneling diodes (RTDs). To achieve high-frequency oscillation, the electron delay time of RTD was reduced with a narrow quantum well and an optimized collector spacer thickness. Conduction loss at the air bridge connecting RTD and slot antenna, which works as a resonator and a radiator, was also reduced. By these structures, a fundamental oscillation up to 1.92 THz was obtained at room temperature. Theoretical calculation shows that an oscillation over 2 THz is further expected by improved structures of RTD and antenna. Using the offset slot antenna and two-element array configuration, high output power of 0.61 mW was obtained at 620 GHz. A direct intensity modulation of RTD oscillators up to 30 GHz, which is useful for high-speed wireless data transmission, was demonstrated. By the integration of a varactor diode, wide frequency sweep of 580–700 GHz in a single device and 580–900 GHz in a four-element array were also demonstrated. This result expands possible applications of RTD oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Nagatsuma, IEICE Electron. Express, 8, 1127 (2011)

    Article  Google Scholar 

  2. M. Hangyo, Jpn. J. Appl. Phys. 54, 120101 (2015)

    Article  Google Scholar 

  3. S. Komiyama, Phys. Rev. Lett. 48, 271 (1982)

    Article  Google Scholar 

  4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfeld, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature, 417, 156 (2002)

    Article  Google Scholar 

  5. B. S. Williams, Nature Photon. 1, 517 (2007)

    Article  Google Scholar 

  6. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, Appl. Phys. Lett. 91, 131122 (2007)

    Article  Google Scholar 

  7. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Express, 20, 3866 (2012)

    Article  Google Scholar 

  8. L. A. Samoska, IEEE Trans. Terahertz Sci. Technol. 1, 9 (2011)

    Article  Google Scholar 

  9. M. Seo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, R. Lin, D. Pukala, and M. Rodwell, IEEE J. Solid-State Circuits 46, 2203 (2011)

    Article  Google Scholar 

  10. O. Momeni and E. Afshari, IEEE J. Solid-State Circuits 46, 583 (2011)

    Article  Google Scholar 

  11. W. Steyaert and P. Reynaert, IEEE J. Solid-State Circuits 49, 1617 (2014)

    Article  Google Scholar 

  12. U. R. Pfeiffer, Y. Zao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, Int. Solid-State Circuit Conf. 14.5 (2014)

  13. X. Mei, W. Yoshida, M. Lange, J. Lee, J. Zhou, P.-H. Liu, K. Leong, A. Zamora, J. Padilla, S. Sarkozy, R. Lai, and W. R. Deal, IEEE Electron. Device Lett. 36, 327 (2015)

    Article  Google Scholar 

  14. J. Nishizawa, P. Plotka, T. Kurabayashi, and H. Makabe, Phys. Stat. Sol. (C), 5, 2802 (2008)

    Article  Google Scholar 

  15. H. Eisele and R. Kamoua, IEEE Trans. Microwave Theory Tech. 52, 2371 (2004)

    Article  Google Scholar 

  16. H. Eisele, Electron. Lett. 46, 422 (2010)

    Article  Google Scholar 

  17. E. R. Brown, J. R. Sönderström, C. D. Parker, L. J. Mahoney, K. M. Molvar and T. C. McGill, Appl. Phys. Lett. 58, 2291 (1991)

    Article  Google Scholar 

  18. M. Reddy, S. C. Martin, A. C. Molnar, R. E. Muller, R. P. Smith, P. H. Siegel, M. J. Mondry, M. J. W. Rodwell, H. Kroemer and S. J. Allen, IEEE Electron Device Lett. 18, 218 (1997)

    Article  Google Scholar 

  19. H. C. Liu and T. C. L. G. Sollner, High-Speed Heterostructure Devices, Ch.6, Academic, San Diego (1994)

  20. S. Suzuki, A. Teranishi, K. Hinata, M. Asada, H. Sugiyama, and H. Yokoyama, Appl. Phys. Express 2, 054501 (2009)

    Article  Google Scholar 

  21. S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, Appl. Phys. Lett. 97, 242102 (2010)

    Article  Google Scholar 

  22. M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, Appl. Phys. Lett., 99, 233506 (2011)

    Article  Google Scholar 

  23. H. Kanaya, H. Shibayama, R. Sogabe, S. Suzuki, and M. Asada, Appl. Phys. Express 5, 124101 (2012)

    Article  Google Scholar 

  24. Y. Koyama, R. Sekiguchi, and T. Ouchi, Appl. Phys. Express, 6, 064102 (2013)

    Article  Google Scholar 

  25. H. Kanaya, R. Sogabe, T. Maekawa, S. Suzuki, and M. Asada, J. Infrared, Millimeter, and Terahertz Waves, 35, 425 (2014)

    Article  Google Scholar 

  26. M. Feiginov, H. Kanaya, S. Suzuki, and M. Asada, Appl. Phys. Lett. 104, 243509 (2014)

    Article  Google Scholar 

  27. T. Maekawa. H. Kanaya, S. Suzuki, and M. Asada, Electron. Lett. 50, 1214 (2014)

    Article  Google Scholar 

  28. H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, Jpn. J. Appl. Phys. 54, 094103 (2015)

    Article  Google Scholar 

  29. T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, Appl. Phys. Express 9, 024101 (2016)

    Article  Google Scholar 

  30. M. Kim, J. Lee, and K. Yang, Compound Semiconductor Week, We1AD6.3, 354 (2015)

  31. N. Orihashi, S. Suzuki, and M. Asada, Appl. Phys. Lett. 87, 233501 (2005)

    Article  Google Scholar 

  32. J. Lee, M. Kim, and K. Yang, Compound Semiconductor Week, MoPP-E16, 96 (2015)

  33. Y. Tateishi, Y. Koyama, R. Sekiguchi, and T. Ouchi, Optical Terahertz Science and Technology Conf. Tu4-48 (2013)

  34. M. Feiginov, Appl. Phys. Lett. 107, 123504 (2015)

    Article  Google Scholar 

  35. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama and S. Arai, Electron. Lett. 48, 582 (2012)

    Article  Google Scholar 

  36. M. Kawamura, T. Mukai, T. Takada, T. Shiode, and T. Nagatsuma, Spring Meeting, IEICE Japan, C-14-3 (2011) (in Japanese)

  37. T. Miyamoto and T. Mukai, Spring Meeting, Japan Society of Applied Physics, 29aD1-2 (2013) (in Japanese)

  38. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, Infrared and Millimeter Waves, Edited by K. J. Button, vol. 10, Ch. 1, Academic Press, 1983

  39. K. Urayama, S. Aoki, S. Suzuki, M. Asada, H. Sugiyama, and H. Yokoyama, Appl. Phys. Express, 2, 044501 (2009)

    Article  Google Scholar 

  40. K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, IEEE Trans. THz Sci. and Tech., 5, 613 (2015)

    Article  Google Scholar 

  41. M. Asada, S. Suzuki, and N. Kishimoto, Jpn. J. Appl. Phys. 47, 4375 (2008)

    Article  Google Scholar 

  42. C. S. Kim and A. Brändli, IRE Trans. Circuit Theory, 8, 416 (1961)

    Article  Google Scholar 

  43. S. Suzuki and M. Asada, Jpn. J. Appl. Phys. 46, 119 (2007)

    Article  Google Scholar 

  44. M. Shiraishi, H. Shibayama, K. Ishigaki, S. Suzuki, M. Asada, H. Sugiyama, and H. Yokoyama, Appl. Phys. Express 4, 064101 (2011)

    Article  Google Scholar 

  45. H. Shibayama, M. Shiraishi, S. Suzuki, and M. Asada, J. Infrared, Millimeter, and Terahertz Waves, 33, 475 (2012)

    Article  Google Scholar 

  46. K. D. Stephan, S.-C. Wang, E. R. Brown, K. M. Molvar, A. R. Calawa, and M. J. Manfra, Electron. Lett. 28, 1411 (1992)

    Article  Google Scholar 

  47. D. P. Steenson, J. M. Chamberlain, R. E. Miles, R. D. Pollard, M. Henini, Int. Conf. Superlattices, Microstructure and Microdevices (ICSMM-7), 98 (1994)

  48. M. P. DeLisio, J. F. Davis, S-J. Li, D. B. Rutledge, and J. J. Rosenberg, IEEE AP-S, Int. Symp. 1284 (1995)

  49. T. Fujii, H. Mazaki, F. Takei, J. Bae, M. Narihiro, T. Noda, H. Sakaki, and K. Mizuno, IEEE MTT-S, Int. Microwave Symp. WE3F-28 (1996)

  50. H. I. Cantu and W. S. Trunscott, Electron. Lett. 37, 1264 (2001)

    Article  Google Scholar 

  51. S. Suzuki, M. Shiraishi, H. Shibayama, and M. Asada, IEEE J. Selected Topics in Quantum Electron. 19, 8500108 (2013)

    Article  Google Scholar 

  52. K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, IEICE Trans. Electron. E98-C, 1131 (2015)

    Article  Google Scholar 

  53. K. Karashima, R. Yokoyama, M. Shiraishi, S. Suzuki, S. Aoki, and M. Asada, Jpn. J. Appl. Phys., 49, 020208 (2010)

    Article  Google Scholar 

  54. N. Shimizu, T. Waho, and T. Ishibashi, Jpn. J. Appl. Phys. 36, L330 (1997)

    Article  Google Scholar 

  55. T. Wei, S. Stapleton, and E. Berolo, J. Appl. Phys. 73, 829 (1993)

    Article  Google Scholar 

  56. R. Lake and J. Yang, IEEE Trans. Electron Devices, 50, 785 (2003)

    Article  Google Scholar 

  57. H.-J. Song and T. Nagatsuma, IEEE Trans. THz Sci. Tech. 1, 256 (2011)

    Article  Google Scholar 

  58. T. Kleine-Ostmann and T. Nagatsuma, J. Infrared Millimeter and Terahertz Waves, 32, 143 (2011)

    Article  Google Scholar 

  59. Y. Ikeda, S. Kitagawa, K. Okada, S. Suzuki, and M. Asada, IEICE Electron. Express, 12, 2014116 (2015)

    Article  Google Scholar 

  60. N. Oshima, H. Hashimoto, D. Horikawa, S. Suzuki, and M. Asada, IEEE International Microwave Symposium, THIF2, San Francisco, May 2016

  61. T. Shiode, T. Mukai, M. Kawamura, and T. Nagatsuma, Proc. Asia Pacific Microwave Conf. 1122 (2011)

  62. S. Kitagawa, S. Suzuki, and M. Asada, IEEE Electron. Device Lett. 15, 1215 (2014)

    Article  Google Scholar 

  63. S. Kitagawa, S. Suzuki, and M. Asada, Electron. Lett. 52, 479 (2016)

    Article  Google Scholar 

  64. S. Kitagawa, S. Suzuki, and M. Asada, Int. Conf. Solid State Devices and Materials, M-1-4, Sapporo, Japan, Sept. 2015

Download references

Acknowledgments

The authors thank Honorary Prof. Y. Suematsu and Emeritus Prof. K. Furuya at the Tokyo Institute of Technology for continuous encouragement. The authors also acknowledge Prof. S. Arai, Prof. Y. Miyamoto, and Assoc. Profs. M. Watanabe and N. Nishiyama for stimulating discussions. This work was supported by a grant-in-aid from Japan Society for the Promotion of Science; the Industry–Academia Collaborative R&D Program and the CREST Program from Japan Science and Technology Agency; and the Strategic Information and Communication R&D Promotion Programme from the Ministry of Internal Affairs and Communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Asada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asada, M., Suzuki, S. Room-Temperature Oscillation of Resonant Tunneling Diodes close to 2 THz and Their Functions for Various Applications. J Infrared Milli Terahz Waves 37, 1185–1198 (2016). https://doi.org/10.1007/s10762-016-0321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0321-6

Keywords

Navigation