Skip to main content
Log in

System Development and Performance Testing of a W-Band Gyrotron

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A high-power W-band gyrotron has been designed and performance tested in Korea, with an output power in the range of tens of kilowatts. The gyrotron consists of a diode-type electron gun operating at 40 kV, a TE6,2 mode interaction cavity, and a mode converter for producing a highly Gaussian output mode beam. Presented here are the detailed component design procedure and the experimental results of the gyrotron’s performance evaluation. A maximum power of 62 kW was achieved with an efficiency of 22 %, and a highly Gaussian output beam was observed. The gyrotron’s output beam is analyzed, and its transmission through an oversized waveguide is discussed. This gyrotron is the first gyrotron developed in Korea with high power greater than 10 kW and high frequency greater than 90 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. B. L. Smith, and M. H. Carpentier, The microwave engineering handbook, Chapman & Hall, London, New York, 2003

    Google Scholar 

  2. I. Ogawa, K. Yoshisue, H. Ibe, T. Idehara, and K. Kawahata, Long‐pulse operation of a submillimeter wave gyrotron and its application to plasma scattering measurement, Rev. Sci. Instrum., 65, 1788–1789, 1994

    Article  Google Scholar 

  3. A. Kasugai, R. Minami, K. Takahashi, N. Kobayashi, and K. Sakamoto, Development of a 170GHz high-power and CW gyrotron for fusion application, IRMMW-THz 2005. 30th Int. Conf., 287–288, 2005

  4. G. Dammertz, S. Alberti, A. Arnold, E. Borie, V. Erckmann, G. Gantenbein, E. Giguet, R. Heidinger, J. P. Hogge, S. Illy, W. Kasparek, K. Koppenburg, M. Kuntze, H. P. Laqua, G. LeCloarec, Y. Legoff, W. Leohardt, C. Lievin, R. Magne, G. Muller, G. Neffe, B. Piosczyk, M. Schmid, K. Schworer, M. Thumm, and M. Q. Tran, Development of a 140-GHz 1-MW Continuous Wave Gyrotron for the W7-X Stellarator, IEEE Trans. Plasma Sci., 30, 808–818, 2002

  5. T. Shimozuma, S. Kubo, M. Sato, H. Idei, Y. Takita, S. Ito, S. Kobayashi, Y. Mizuno, Y. Yoshimura, K. Ohkubo, H. Funaba, S. Inagaki, T. Kobuchi, S. Masuzaki, S. Muto, M. Shoji, H. Suzuki, N. Noda, Y. Nakamura, K. Kawahata, N. Ohyabu, O. Motojima, and LHD Experimental Group, ECH system and its application to long pulse discharge in large helical device, Fusion Eng. Des., 53, 525–536, 2001

    Article  Google Scholar 

  6. J. P. Hogge, F. Albajar, S. Alberti, P. Benin, T. Bonicelli, S. Cirant, D. Fasel, T. Goodman, S. Illy, S. Jawla, C. Lievin, I. Pagonakis, A. Perez, B. Piosczyk, L. Porte, T. Rzesnicki, M. Thumm, and M.Q. Tran, The European 2MW, 170GHz Coaxial Cavity Gyrotron for ITER, IRMMW-THz 2007. 32nd Int. Conf., 38–40, 2007

  7. T. Rzesnicki, B. Piosczyk, S. Kern, S. Illy, J. Jianbo, A. Samartsev, A. Schlaich, and M. Thumm, 2.2-MW Record Power of the 170-GHz European Preprototype Coaxial-Cavity Gyrotron for ITER, IEEE Trans. Plasma Sci., 38, 1141–1149, 2010

    Article  Google Scholar 

  8. K. Sakamoto, A. Kasugai, K. Takahashi, R. Minami, N. Kobayashi, and K. Kajiwara, Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous- wave gyrotron, Nature Phys., 3, 411–414, 2007

    Article  Google Scholar 

  9. M. Yu. Glyavin, A. G. Luchinin, A. A. Bogdashow, V. N. Manuilov, M. V. Morozkin, Yu. Rodin, G. G. Denisov, D. Kashin, G. Rogers, C. A. Romero-Talamas, R. Pu, A. G. Shkvarunetz, and G. S. Nusinovich, Experimental study of the pulsed terahertz gyrotron with record-breaking power and efficiency parameters, Radiophys. Quantum Electron., 56, 497–507, 2014

    Article  Google Scholar 

  10. Y. Yamaguchi, T. Saito, Y. Tatematsu, S. Ikeuchi, V. N. Manuilov, J. Kasa, M. Totera, T. Idehara, S. Kubo, T. Shimozuma, K. Tanaka, and M. Nishiura, High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the large helical device, Nucl. Fusion 55, 013002, 2015

    Article  Google Scholar 

  11. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kora, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, Vacuum electronic high power terahertz sources, IEEE Trans. THz Sci. Technol., 1, 54–72, 2011

    Article  Google Scholar 

  12. L. A. Samoska, An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz range, IEEE Trans. THz Sci. Technol., 1, 9–24, 2011

    Article  Google Scholar 

  13. M. Thumm, High power gyro-devices for plasma heating and other applications, J. Infrared Milli. Terahertz waves, 26, 483–503, 2005

    Article  Google Scholar 

  14. E. A. Nanni, A. B. Barnes, R. G. Griffin, and R. J. Temkin, THz dynamic nuclear polarization NMR, IEEE Trans. THz Sci. Technol., 1, 145–163, 2011

    Article  Google Scholar 

  15. C. D. Joye, R. G. Griffin, M. K. Hornstein, K. N. Hu, K. E. Kreischer, M. Rosay, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and P. P. Woskov, Operational characteristics of a 14W 140GHz gyrotron for dynamic nuclear polarization, IEEE Trans. Plasma Sci., 34, 518–513, 2006

    Article  Google Scholar 

  16. T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, L. Agusu, H. Mori, and S. Kobayashi, Development of terahertz FU CW gyrotron series for DNP, Appl. Magn. Reson., 34, 265–275, 2008

    Article  Google Scholar 

  17. A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, Operation of a continuously frequency tunable second harmonic CW 330GHz gyrotron for dynamic nuclear polarization, IEEE Trans. Electron Devices, 58, 2777–2783, 2011

    Article  Google Scholar 

  18. M. Pilossof, and M. Einat, Note: A 95GHz mid-power gyrotron for medical applications measurements, Rev. Sci. Instrum., 86, 2015

  19. P. P. Woskov, A reflected power isolator for a 10kW, 28GHz gyrotron, IEEE MTT-S, 1–3, 2013

  20. T. Idehara, I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, and K. Yoshida, Development of frequency tunable, medium power gyrotrons as submillimeter wave radiation sources, IEEE Trans. Plasma Sci., 27, 340–354, 1999

    Article  Google Scholar 

  21. P. P. Woskov, H. H. Einstein, and K. D. Oglesby, Application of fusion gyrotrons to enhanced geothermal systems (EGS), Bull. Am. Phys. Soc., 58, 2013

  22. P. P. Woskov, H. H. Einstein, and K. D. Oglesby, Penetrating rock with intense millimeter waves, IRMMW-THz 2014. 39th Int. Conf., 1–2, 2014

  23. P. P. Woskov, and P. Michael, Millimeter wave heating, radiometry, and calorimetry of granite rock to vaporization, J. Infrared Milli. Terahertz waves, 33, 82–95, 2012

    Article  Google Scholar 

  24. F. Paul, W. Menesklou, G. Link, X. Zhou, J. Hauselt, and J. R. Binder, Impact of microwave sintering on dielectric properties of screen printed Ba0.6Sr0.4TiO3 thick films, Jour. Eur. Ceram. Soc., 34, 687–694, 2014

    Article  Google Scholar 

  25. M. V. Kartikeyan, E. Borie, and M. Thumm, Gyrotrons high power microwave and millimeter wave technology, Springer, Berlin, Germany, 2004

    Google Scholar 

  26. E. Borie, and O. Dumbrajs, Calculation of eigenmodes of tapered gyrotron resonators, Int. J. Electronics, 60, 143–154, 1986

    Article  Google Scholar 

  27. A. Sawant, S. G. Kim, M.C. Lin, J.H. Kim, Y. J. Hong, J. So, E. M. Choi, Validation of 3-D time domain particle-in-cell simulations for cold testing a W-band gyrotron cavity, IEEE Trans. Plasma Sci., 42, 3989–3995, 2014

    Article  Google Scholar 

  28. Surf3d computational Ver. 2.43, GUI Ver. 1.21 user manual, Lexam research. www.calcreek.com

  29. D. S. Tax, E. M. Choi, I. Mastovsky, J. M. Neilson, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and A. C. Torrezan, Experimental results on a 1.5 MW, 110 GHz gyrotron with a smooth mirror mode converter, J. Infrared Mill. Terahz Waves, 32, 358–370, 2011

    Article  Google Scholar 

  30. S. G. Kim, D. S. Kim, M. S. Choe, W. Lee, J. So, and E. M. Choi, Cold testing of quasi-optical mode converters using a generator for non-rotating high-order gyrotron modes, Rev. Sci. Instrum., 85, 2014

  31. S. G. Kim, J. H. Kim, D. S. Kim, W. Lee, J. H. Won, W. Jang, and E. M. Choi, A real-time, direct power measurement of a high power electron cyclotron maser using a simple one-point Schottky detector signal, IEEE Trans. THz. Sci. Tech., 5, 779–785, 2015

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Research & Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014M1A7A1A03029874) and (NRF-2013R1A1A2061062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EunMi Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.G., Sawant, A., Lee, I. et al. System Development and Performance Testing of a W-Band Gyrotron. J Infrared Milli Terahz Waves 37, 209–229 (2016). https://doi.org/10.1007/s10762-015-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0221-1

Keywords

Navigation