Skip to main content
Log in

Exact Reconstruction for Near-Field Three-Dimensional Planar Millimeter-Wave Holographic Imaging

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, an exact reconstruction formula is presented for near-field three-dimensional (3D) planar millimeter-wave (MMW) holographic imaging. The proposed formula is derived based on scalar diffraction theory, and the round-trip imaging process is equivalent to a unidirectional optical field propagation. Because of compensating the propagation loss of the source for the near-field imaging configuration, the inconsistency in range domain of the reconstructed 3D images is avoided. The proposed reconstruction formula also gives a phase correction for the reconstructed complex-valued reflectivity of the target and the range coordinate can be exactly determined. Simulations and laboratory imaging experiments are performed to demonstrate the effectiveness of the proposed reconstruction formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Oka, H. Togo, N. Kukutsu, and T. Nagatsuma, Latest trends in millimeter-wave imaging technology, Prog. Electromagn. Res. Lett. 1, 197–204 (2008).

    Article  Google Scholar 

  2. H. Stanko, D. Notel, A. Wahlen, J. Huck, F. Kloppel, R. Sommer, M. Hagelen, and H. Essen, Active and passive mm-wave imaging for concealed weapon detection and surveillance, 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1-2(2008).

  3. X. Gao, C. Li, S. Gu, and G. Fang, Design, analysis and measurement of a millimeter wave antenna suitable for stand off imaging at checkpoints, J. Infrared Milli. Te. 32, 1314–1327 (2011).

    Article  Google Scholar 

  4. S. Yeom, D. S. Lee, J. Y. Son, M. K. Jung, Y. Jang, S. W. Jung, and S. J. Lee, Real-time outdoor concealed-object detection with passive millimeter wave imaging, Opt. express 19(3), 2530–2536 (2011).

    Article  Google Scholar 

  5. B. Kapilevich, Y. Pinhasi, R. Arusi, M. Anisimov, D. Hardon, B. Litvak, and Y. Wool, 330 GHz FMCW image sensor for homeland security applications, J. Infrared Milli. Te. 31, 1370–1381 (2010).

    Article  Google Scholar 

  6. L. Li, J. Yang, G. Cui, Z. Jiang, and X. Zheng, Method of passive MMW image detection and identification for close target, J. Infrared Milli. Te. 32, 102–115 (2011).

    Article  Google Scholar 

  7. H. D. Collins, D. L. McMakin, T. E. Hall, and R. P. Gribble, Real-time holographic surveillance system, (U.S. Patent 5 455 590, 1995).

  8. D. M. Sheen, D. L. McMakin, and T. E. Hall, Three-dimensional millimeter-wave imaging for concealed weapon detection, IEEE T. Microw. Theory 49(9), 1581–1592 (2001).

    Article  Google Scholar 

  9. D. Sheen, D. McMakin, and T. Hall, Near-field three-dimensional radar imaging techniques and applications, Appl. Opt. 49(19), E83-E93 (2010).

    Article  Google Scholar 

  10. D. M. Sheen, D. L. McMakin, and T. E. Hall, Cylindrical millimeter-wave imaging technique and applications, Defense and Security Symposium (International Society for Optics and Photonics), 62110A(2006).

  11. Z. Li, J. Wang, J. Wu, and Q. H. Liu, A Fast Radial Scanned Near-Field 3-D SAR Imaging System and the Reconstruction Method, IEEE T. Geosci. Remote 53(3), 1355-1363(2015).

    Article  Google Scholar 

  12. J. Fortuny-Guasch and J. M. Lopez-Sanchez, Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries, IEEE T. Antenn. Propag. 49(10), 1434–1444 (2001).

    Article  Google Scholar 

  13. C. Cafforio, C. Prati, and F. Rocca, SAR data focusing using seismic migration techniques, IEEE T. Aero. Elec. Sys. 27(2), 194–207 (1991).

    Article  Google Scholar 

  14. J. M. Lopez-Sanchez and J. Fortuny-Guasch, 3-D radar imaging using range migration techniques, IEEE T. Antenn. Propag. 48(5), 728–737 (2000).

    Article  Google Scholar 

  15. Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, 3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry, Prog. Electromagn. Res. 121, 409–431 (2011).

    Article  Google Scholar 

  16. S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. Vertiy, A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm, Prog. Electromagn. Res. 128, 457-477(2012).

    Article  Google Scholar 

  17. J. Moll, P. Schops, and V. Krozer, Towards three-dimensional millimeter-wave radar with the bistatic fast-factorized back-projection algorithm—potential and limitations, IEEE T. THz Sci. Techn. 2(4), 432–440 (2012).

    Article  Google Scholar 

  18. B. Hildebrand and K. Haines, Holography by scanning, J. Opt. Soc. Am. 59(1), 1–6 (1969).

    Article  Google Scholar 

  19. B. P. Hildebrand and B. B. Brenden, An introduction to acoustical holography (Springer, 1974).

  20. G. Tricoles and N. H. Farhat, Microwave holography-Applications and techniques, IEEE Proceedings 65, 108-121(1977).

    Article  Google Scholar 

  21. L. Qiao, Y. Wang, Z. Shen, Z. Zhao and Z. Chen, Compressive sensing for direct millimeter-wave holographic imaging, Appl. Opt. 54(11), 3280–3289 (2015).

    Article  Google Scholar 

  22. Z. Sun, C. Li, X. Gao, and G. Fang, Minimum-Entropy-Based Adaptive Focusing Algorithm for Image Reconstruction of Terahertz Single-Frequency Holography With Improved Depth of Focus, IEEE T. Geosci. Remote 53(1), 519–526 (2015).

    Article  Google Scholar 

  23. A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana, and S. Ciochina, Short-range wideband FMCW radar for millimetric displacement measurements, IEEE T. Geosci. Remote 52(9), 5633–5642 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Scientific Instrument and Equipment Development Projects of China (No. 2012YQ14003701). The authors also thank Dr. Chang Ming for his help to our experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziran Zhao or Zhiqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Wang, Y., Zhao, Z. et al. Exact Reconstruction for Near-Field Three-Dimensional Planar Millimeter-Wave Holographic Imaging. J Infrared Milli Terahz Waves 36, 1221–1236 (2015). https://doi.org/10.1007/s10762-015-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0207-z

Keywords

Navigation