Skip to main content

Advertisement

Log in

Analysis of Linewidth Tunable Terahertz Wave Generation in Periodically Poled Lithium Niobate

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A new scheme of optical rectification of femtosecond laser pulses in a periodically poled lithium niobate crystal, which generates high energy and linewidth tunable multicycle terahertz (THz) pulses, is analyzed. The developed simple theoretical model allows investigating the generated THz spectrum and its dependence on spot size of the pump beam. It is shown that the transformation of THz radiation from narrowband to broadband is possible by simply reducing the pump beam size. The temporal waveform and energy of the multicycle THz pulses were calculated as well. It is shown that THz energy is inversely proportional to the pump beam size r y , whereas energy spectral density is independent of r y . The efficiency of optical-to-THz energy conversion for pump pulse energy of 1 mJ is estimated to be 0.8 × 10−4. The possibility of tuning the generation frequency by changing the direction of the pump beam propagation is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5, 559–576 (2008).

    Article  Google Scholar 

  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).

    Article  Google Scholar 

  3. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

  4. N. S. Ginzburg, A. M. Malkin*, N. Yu. Peskov, A. S. Sergeev, V. Yu. Zaslavsky, and I. V. Zotova, “Powerful terahertz free electron lasers with hybrid Bragg reflectors,” Phys. Rev. ST Accel. Beams 14, 042001 (2011)

    Google Scholar 

  5. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).

    Article  Google Scholar 

  6. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64, 137–139 (1994).

    Article  Google Scholar 

  7. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19, 19114-19121 (2011).

    Article  Google Scholar 

  8. J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104, 033111 (2008).

    Article  Google Scholar 

  9. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99, 071102 (2011).

    Article  Google Scholar 

  10. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,”Appl. Phys. Lett. 76, 2505-2507 (2000).

    Google Scholar 

  11. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244-1246 (2000).

    Article  Google Scholar 

  12. J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory ,” Appl. Phys. B. 86, 185-196 (2007).

    Article  Google Scholar 

  13. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26, 563-565 (2001).

    Article  Google Scholar 

  14. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439-4444 (2006).

    Article  Google Scholar 

  15. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2, 11-25 (2008).

    Article  Google Scholar 

  16. C. Zhang, Y. Avetisyan, A. Glosser, I. Kawayama, H. Murakami, and M. Tonouchi, “Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate,” Opt. Express 20, 8784-8790 (2012).

    Article  Google Scholar 

  17. K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani, and K.Kawase, “Cherenkov phase-matched monochromatic THz wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493-7498 (2008).

    Article  Google Scholar 

  18. H. Ishizuki, and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 with 5 mm x 5 mm aperture,” Opt. Lett. 30, 2918-2920 (2005).

    Article  Google Scholar 

  19. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).

    Article  Google Scholar 

  20. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).

    Article  Google Scholar 

  21. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).

    Article  Google Scholar 

  22. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).

    Article  Google Scholar 

  23. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268-2293 (1997).

    Article  Google Scholar 

  24. M. Nagai, E. Matsubara, and M. Ashida, “High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process,” Opt. Express 20 6509-6514 (2012)

    Article  Google Scholar 

  25. S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256, 146-151 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Grant-in-Aid T236562190 and core-to-core program, JSPS, and Industry-Academia Collaborative R&D, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Avetisyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avetisyan, Y., Zhang, C. & Tonouchi, M. Analysis of Linewidth Tunable Terahertz Wave Generation in Periodically Poled Lithium Niobate. J Infrared Milli Terahz Waves 33, 989–998 (2012). https://doi.org/10.1007/s10762-012-9918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9918-6

Keywords

Navigation