Skip to main content
Log in

Highly efficient terahertz generation from periodically poled lithium niobate

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Terahertz (THz) generation from periodically poled lithium niobate with a quasi-phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes interaction processes and the cascaded anti-Stokes interaction processes are investigated from coupled wave equations. THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascading DFG processes, THz intensities from 15-order cascading DFG processes are increased to 7.7. The quantum conversion efficiency of 390.85% in cascaded processes can be realized, which exceeds the Manley–Rowe limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, Wireless sub-THz communication system with high data rate. Nat. Photonics 7, 977–981 (2013)

    Article  ADS  Google Scholar 

  2. C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)

    Article  ADS  Google Scholar 

  3. M. Johnston, Plasmonics: superfocusing of terahertz waves. Nat. Photonics 1, 14–15 (2007)

    Article  ADS  Google Scholar 

  4. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    Article  ADS  Google Scholar 

  5. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  ADS  Google Scholar 

  6. K.L. Yeh, M.C. Hoffmann, J. Hebling, K.A. Nelson, Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007)

    Article  ADS  Google Scholar 

  7. B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photonics 1, 517–525 (2007)

    Article  ADS  Google Scholar 

  8. G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, G.P. Williams, High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002)

    Article  ADS  Google Scholar 

  9. Y.J. Ding, Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies. IEEE J. Sel. Top. Quantum Electron. 10, 1171–1179 (2004)

    Article  ADS  Google Scholar 

  10. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov, M.S. Shur, Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 84, 2331–2333 (2004)

    Article  ADS  Google Scholar 

  11. Y.J. Ding, Progress in terahertz sources based on difference-frequency generation [Invited]. J. Opt. Soc. Am. B 31, 2696–2711 (2014)

    Article  ADS  Google Scholar 

  12. A. Majkić, M. Zgonik, A. Petelin, M. Jazbinšek, B. Ruiz, C. Medrano, P. Günter, Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1. Appl. Phys. Lett. 105, 141115 (2014)

    Article  ADS  Google Scholar 

  13. B. Dolasinski, P.E. Powers, J.W. Haus, A. Coone, Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG. Opt. Express 23, 3669–3680 (2015)

    Article  ADS  Google Scholar 

  14. K. Saito, T. Tanabe, Y. Oyama, Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing. Appl. Opt. 53, 3587–3592 (2014)

    Article  ADS  Google Scholar 

  15. K. Ravi, M. Hemmer, G. Cirmi, F. Reichert, D.N. Schimpf, O.D. Mücke, F.X. Kärtner, Cascaded parametric amplification for highly efficient terahertz generation. Opt. Lett. 41, 3806–3809 (2016)

    Article  ADS  Google Scholar 

  16. A.J. Lee, H.M. Pask, Cascaded stimulated polariton scattering in a Mg:LiNbO3 terahertz laser. Opt. Express 23, 8687–8698 (2015)

    Article  ADS  Google Scholar 

  17. K. Saito, T. Tanabe, Y. Oyama, Cascaded terahertz-wave generation efficiency in excess of the Manley–Rowe limit using a cavity phase-matched optical parametric oscillator. J. Opt. Soc. Am. B 32, 617–621 (2015)

    Article  ADS  Google Scholar 

  18. R. Sowade, I. Breunig, I.C. Mayorga, J. Kiessling, C. Tulea, V. Dierolf, K. Buse, Continuous-wave optical parametric terahertz source. Opt. Express 17, 22303–22310 (2009)

    Article  ADS  Google Scholar 

  19. K. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs. Laser Photon. Rev. 2, 11–25 (2008)

    Article  ADS  Google Scholar 

  20. T.D. Wang, Y.C. Huang, M.Y. Chuang, Y.H. Lin, C.H. Lee, Y.Y. Lin, F.Y. Lin, G.K. Kitaeva, Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain. Opt. Express 21, 2452–2462 (2013)

    Article  ADS  Google Scholar 

  21. O. Gayer, Z. Sacks, E. Galun, A. Arie, Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B Lasers Opt. 91, 343–348 (2008)

    Article  ADS  Google Scholar 

  22. J. Kiessling, K. Buse, I. Breunig, Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol% MgO-doped LiNbO3 in the terahertz range. J. Opt. Soc. Am. B 30, 950–952 (2013)

    Article  ADS  Google Scholar 

  23. S.S. Sussman, Tunable light scattering from transverse optical modes in lithium niobate. Stanford University, Report of Microwave Lab No. 1851, pp. 22–34 (1970)

  24. K. Zhong, J.Q. Yao, D.G. Xu, H.Y. Zhang, P. Wang, Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta. Phys. Sin. 60(3), 034210 (2011)

    Google Scholar 

  25. Z. Li, P. Bing, S. Yuan, Terahertz generation by DSTMS based on cascaded difference frequency generation. Optik 127(7), 3552–3555 (2016)

    Article  ADS  Google Scholar 

  26. C.F. Hu, K. Zhong, J.L. Mei, M.R. Wang, S.B. Guo, W.Z. Xu, J.Q. Yao, Theoretical analysis of terahertz generation in periodically inverted nonlinear crystals based on cascaded difference frequency generation process. Modern Phys. Lett. B 29(02), 1450263 (2015)

    Article  ADS  Google Scholar 

  27. Z. Li, B. Yuan, S. Wang, M. Wang, P. Bing, Periodically poled BaTiO3: an excellent crystal for terahertz wave generation by cascaded difference-frequency generation. Curr. Opt. Photon. 2(2), 179–184 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61201101, 61601183 and 61205003), Natural Science Foundation of Henan Province (Grant No. 162300410190), Young Backbone Teachers in University of Henan Province (Grant No. 2014GGJS-065), Foundation and Advanced Technology Research Program of Henan Province (Grant No. 162300410269), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (Grant No. 16IRTSTHN017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, S., Wang, M. et al. Highly efficient terahertz generation from periodically poled lithium niobate. J Opt 48, 166–171 (2019). https://doi.org/10.1007/s12596-019-00531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00531-3

Keywords

Navigation