Skip to main content
Log in

Mid-infrared Frequency Comb Spanning an Octave Based on an Er Fiber Laser and Difference-Frequency Generation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600–2500 cm-1 (4–17 μm) and thus covering much of the infrared "fingerprint" molecular vibration region. It is based on nonlinear frequency conversion in GaSe using a compact commercial 100-fs-pulsed Er fiber laser system providing two amplified near-infrared beams, one of them broadened by a nonlinear optical fiber. The resulting collimated mid-infrared continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency comb with zero carrier-envelope phase, containing about 500,000 modes that are exact multiples of the pulse repetition rate of 40 MHz. The beam's diffraction-limited performance enables long-distance spectroscopic probing as well as maximal focusability for classical and ultraresolving near-field microscopies. Applications are foreseen also in studies of transient chemical phenomena even at ultrafast pump-probe scale, and in high-resolution gas spectroscopy for e.g. breath analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Griffiths, P. R. & Haseth, J. A. d. Fourier Transform Infrared Spectroscopy (Wiley, 2007).

  2. Miller, L. M. & Dumas, P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica and Biophysica Acta 1758, 846–857 (2006).

    Article  Google Scholar 

  3. Cao, X., Jahazi, M., Immarigeon, J. P. & Wallace, W. A review of laser welding techniques for magnesium alloys. Journal of Materials processing Technology 171, 188–204 (2006).

    Article  Google Scholar 

  4. Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Applied Physics B 92, 305–311 (2008).

    Article  Google Scholar 

  5. Amy-Klein, A. et al. Slow molecule detection of Ramsey fringes in two-photon spectroscopy: which is better for high resolution spectroscopy and metrology. Optics Express 4, 67–76 (1999).

    Article  Google Scholar 

  6. Liu, X. Free-space optics optimization models for building sway and atmospheric interference using variable wavelength. IEEE Transactions on Communications 57, 492–498 (2009).

    Article  Google Scholar 

  7. Röseler, A. Infrared spectroscopic ellipsometry (Akademie-Verlag, 1990).

  8. Ashkenov, N. et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. Journal of Applied Physics 93, 126–133 (2003).

    Article  Google Scholar 

  9. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philosophical Transactions of the Royal Society A 362, 787–805 (2004).

    Article  Google Scholar 

  10. Keilmann, F. & Hillenbrand, R. in Nano-Optics and Near-Field Optical Microscopy, eds. A. Zayats and D. Richards, ISBN 978-1-59693-283-8 (ArtechHouse, 2009).

  11. Adler, F., Cossel, K. C. & Thorpe, M. Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 μm. Optics Letters 34, 1330–1332 (2009).

    Article  Google Scholar 

  12. Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator. Optics Letters 36, 2275–2277 (2011).

    Article  Google Scholar 

  13. Schliesser, A., Picque, N. & Hänsch, T. W. Mid-infrared frequency combs. In prep. (2012).

  14. Wang, C. Y. et al. Mid-infrared optical frequency combs based on crystalline microresonators. arxiv:1109.2716v1 (2011).

  15. Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by a femtosecond Tm-fiber laser. Optics Express 20, 7046–7053 (2012).

    Article  Google Scholar 

  16. Zhang, Z. et al. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Optics Letters 37, 187–189 (2012).

    Article  Google Scholar 

  17. Gambetta, A., Ramponi, R. & Marangoni, M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Optics Letters 33, 2671–2673 (2008).

    Article  Google Scholar 

  18. Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B 83, 45404-1–45404-9 (2011).

    Google Scholar 

  19. Ruehl, A. et al. Widely tunable mid-IR frequency comb source based on difference frequency generation. arXiv:1203.2441v1 (2012).

  20. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  Google Scholar 

  21. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Optics Express 14, 11222–11233 (2006).

    Article  Google Scholar 

  22. Baum, P., Lochbrunner, S. & Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Optics Letters 29, 1686–1688 (2004).

    Article  Google Scholar 

  23. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nanoletters (2012).

  24. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Optics Letters 29, 1542–1544 (2004).

    Article  Google Scholar 

  25. Schliesser, A., Brehm, M., van der Weide, D. W. & Keilmann, F. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Optics Express 13, 9029–9038 (2005).

    Article  Google Scholar 

  26. Brehm, M., Schliesser, A., Cajko, F., Tsukerman, I. & Keilmann, F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express 16, 11203–11215 (2008).

    Article  Google Scholar 

  27. Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Optics Letters 37, 638–640 (2012).

    Article  Google Scholar 

  28. Nguyen, P. H., Staudt, H., Wachtveitl, J. & Stock, G. Real time observation of ultrafast peptide conformational dynamics: molecular dynamics simulation vs infrared experiment. J. Physical Chemistry B 115, 13084–13092 (2011).

    Article  Google Scholar 

  29. Günter, G. et al. Sub-cycle switch-on of ultrastrong light-matter interaction. Nature 458, 178–181 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge helpful dicussions with Marco Marangoni and Albert Schliesser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Keilmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keilmann, F., Amarie, S. Mid-infrared Frequency Comb Spanning an Octave Based on an Er Fiber Laser and Difference-Frequency Generation. J Infrared Milli Terahz Waves 33, 479–484 (2012). https://doi.org/10.1007/s10762-012-9894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9894-x

Keywords

Navigation