Skip to main content
Log in

Optimized Optical Rectification and Electro-optic Sampling in ZnTe Crystals with Chirped Femtosecond Laser Pulses

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We report on optimization of the intensity of THz signals generated and detected by optical rectification and electro-optic sampling in dispersive, nonlinear media. Addition of a negative prechirp to the femtosecond laser pulses used in the THz generation and detection processes in 1-mm thick ZnTe crystals leads to an increase of the THz intensity of more than 30% at low laser intensity and up to 60% at higher laser intensity. Dispersion compensation in the ZnTe crystal, which becomes significant for laser pulses with durations much less than 100 fs, is responsible for the enhanced generation and detection efficiency at low excitation intensity, and our simulations indicate that two-photon absorption is responsible for the increased efficiency enhancement observed at high excitation intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. U. Jepsen, D. G. Cooke and M. Koch, "Terahertz spectroscopy and imaging – Modern techniques and applications," Laser Photon. Rev. 5, 124–166 (2011).

    Article  Google Scholar 

  2. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Elsevier, 2008).

    Google Scholar 

  3. G. Gallot and D. Grischkowsky, "Electro-optic detection of terahertz radiation," J. opt. Soc. Am. B 16, 1204–1212 (1999).

    Article  Google Scholar 

  4. Q. Wu and X. C. Zhang, "Free-space electro-optic sampling of terahertz beams," Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article  Google Scholar 

  5. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, R3052-R3054 (1996).

    Article  Google Scholar 

  6. A. Nahata, D. H. Auston, T. F. Heinz and C. J. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150–152 (1996).

    Article  Google Scholar 

  7. R. L. Fork, O. E. Martinez and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150–152 (1984).

    Article  Google Scholar 

  8. J.-C. Diels and W. Rudolph, Ultrashort laser pulse phenomena, 2nd ed. (Academic Press, Amsterdam, 2006).

    Google Scholar 

  9. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Amsterdam, 2007).

    Google Scholar 

  10. J. T. Kristensen, A. Houmann, X. M. Liu and D. Turchinovich, "Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression," Opt. Express 16, 9986–9995 (2008).

    Article  Google Scholar 

  11. F. Eichhorn, R. K. Olsson, J. C. D. Buron, L. Gruner-Nielsen, J. E. Pedersen and P. U. Jepsen, "Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm," Opt. Express 18, 6978–6987 (2010).

    Article  Google Scholar 

  12. A. Diaspro (Ed.), Confocal and two-photon microscopy. (John Wiley & Sons, New York, 2002).

    Google Scholar 

  13. F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H. C. Bandulet, F. Vidal, R. Morandotti, J. C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid and F. Hegmann, "Generation of Intense Terahertz Radiation via Optical Methods," IEEE J. Sel. Top. Quantum Electron. 17, 5–16 (2011).

    Article  Google Scholar 

  14. K. L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, "Generation of 10 μJ ultrashort terahertz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).

    Google Scholar 

  15. J. Fülöp, L. Pálfalvi, G. Almási and J. Hebling, "High Energy THz Pulse Generation by Tilted Pulse Front Excitation and Its Nonlinear Optical Applications," J. Infrared Millim. Terahertz Waves 32, 553–561 (2011).

    Article  Google Scholar 

  16. R. A. Kaindl, F. Eickemeyer, M. Woerner and T. Elsaesser, "Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: Experiment and theory," Appl. Phys. Lett. 75, 1060–1062 (1999).

    Article  Google Scholar 

  17. G. Gallot, J. Q. Zhang, R. W. McGowan, T. I. Jeon and D. Grischkowsky, "Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation," Appl. Phys. Lett. 74, 3450–3452 (1999).

    Article  Google Scholar 

  18. D. T. F. Marple, "Refractive index of ZnSe, ZnTe, and CdTe," J. Appl. Phys. 35, 539–542 (1964).

    Article  Google Scholar 

  19. J. Faure, J. Van Tilborg, R. A. Kaindl and W. P. Leemans, "Modelling laser-based table-top THz sources: Optical rectification, propagation and electro-optic sampling," Opt. Quantum Electron. 36, 681–697 (2004).

    Article  Google Scholar 

  20. V. Y. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov and A. Shuvaev, "Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal," Quantum Electron. 35, 407–414 (2005).

    Article  Google Scholar 

  21. Q. R. Xing, L. Y. Lang, Z. Tian, N. Zhang, S. X. Li, K. Wang, L. Chai and Q. Y. Wang, "The effect of two-photon absorption and optical excitation area on the generation of THz radiation," Opt. Comm. 267, 422–426 (2006).

    Article  Google Scholar 

  22. Z. Y. Zhao, S. Hameau and J. Tignon, "THz generation by optical rectification and competition with other nonlinear processes," Chin. Phys. Lett. 25, 1868–1870 (2008).

    Article  Google Scholar 

  23. X. Chen, S. He, Z. Shen, F. Li Zhao, K. Y. Xu, G. Wang, R. Wang and N. Dai, "Influence of nonlinear effects in ZnTe on generation and detection of terahertz waves," J. Appl. Phys. 105, 023106 (2009).

    Article  Google Scholar 

  24. S. M. Harrel, R. L. Milot, J. M. Schleicher and C. A. Schmuttenmaer, "Influence of free-carrier absorption on terahertz generation from ZnTe(110)," J. Appl. Phys. 107, 033526 (2010).

    Article  Google Scholar 

  25. M. Schall and P. U. Jepsen, "Above-band gap two-photon absorption and its influence on ultrafast carrier dynamics in ZnTe and CdTe," Appl. Phys. Lett. 80, 4771–4773 (2002).

    Article  Google Scholar 

  26. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E. W. V. Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405–414 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Uhd Jepsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erschens, D.N., Turchinovich, D. & Jepsen, P.U. Optimized Optical Rectification and Electro-optic Sampling in ZnTe Crystals with Chirped Femtosecond Laser Pulses. J Infrared Milli Terahz Waves 32, 1371–1381 (2011). https://doi.org/10.1007/s10762-011-9829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9829-y

Keywords

Navigation