Skip to main content

Advertisement

Log in

AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Guo, Q., Y. Wang, D. Xu, J. Nossent, N.J. Pavlos, and J. Xu. 2018. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Research 6 (15): 1–14.

    Google Scholar 

  2. WHO. 2018. Rheumatoid Arthritis. www.who.int/chp/topics/rheumatic/en/

  3. Aletaha, D., T. Neogi, A.J. Silman, J. Funovits, D.T. Felson, C.O. Bingham, N.S. Birnbaum, G.R. Burmester, V.P. Bykerk, M.D. Cohen, B. Combe, K.H. Costenbader, M. Dougados, P. Emery, G. Ferraccioli, J.M. Hazes, K. Hobbs, T.W. Huizinga, A. Kavanaugh, J. Kay, T.K. Kvien, T. Laing, P. Mease, H.A. Ménard, L.W. Moreland, R.L. Naden, T. Pincus, J.S. Smolen, E. Stanislawska-Biernat, D. Symmons, P.P. Tak, K.S. Upchurch, J. Vencovský, F. Wolfe, and G. Hawker. 2010. Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatology 62 (9): 2569–2581.

    Google Scholar 

  4. Smolen, J.S., D. Aletaha, A. Barton, G.R. Burmester, P. Emery, G.S. Firestein, A. Kavanaugh, I.B. McInnes, D.H. Solomon, V. Strand, and K. Yamamoto. 2018. Rheumatoid arthritis. Nature Reviews Disease Primers 4 (18001): 1–23.

    Google Scholar 

  5. Fang, Q., and O, Jiaxin, and K.S. Nandakumar. 2019. Autoantibodies as diagnostic markers and mediator of joint inflammation in arthritis. Mediators of Inflammation 2019 (6363086): 22.

    Google Scholar 

  6. Carubbi, F., A. Alunno, R. Gerli, and R. Giacomelli. 2019. Post-translational modifications of proteins: Novel insights in the autoimmune response in rheumatoid arthritis. Cells 8 (657): 1–13.

    Google Scholar 

  7. Santos, A.L., and A.B. Lindner. 2017. Protein post translational modifications: Roles in aging and age-related disease. Oxidative Medicine and Cellular Longevity 2017: 5716409.

    PubMed  PubMed Central  Google Scholar 

  8. Harmel, R., and D. Fiedler. 2018. Features and regulation of non-enzymatic post-translational modifications. Nature Chemical Biology 14: 244–252.

    CAS  PubMed  Google Scholar 

  9. DeGroot, L., H. Hinkema, J. Westra, A.J. Smit, C.G. Kallenberg, M. Bijl, and M.D. Posthumus. 2011. Advanced glycation endproducts are increased in rheumatoid arthritis patients with controlled disease. Arthritis Research & Therapy 13 (6): R205.

    CAS  Google Scholar 

  10. Ansari, N.A., and D. Dash. 2013. Amadori glycated proteins: Role in production of autoantibodies in diabetes mellitus and effect of inhibitors on non-enzymatic glycation. Aging and Disease 4 (1): 50–56.

    PubMed  Google Scholar 

  11. Welsh, K.J., M.S. Kirkman, and D.B. Sacks. 2016. Role of glycated proteins in the diagnosis and management of diabetes: Research gaps and future directions. Diabetes Care 39 (8): 1299–1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Younessi, P., and A. Yoonessi. 2011. Advanced glycation end-products and their receptor-mediated roles: Inflammation and oxidative stress. The Iranian Journal of Medical Sciences 36 (3): 154–166.

    PubMed  Google Scholar 

  13. Sharma, C., A. Kaur, S.S. Thind, B. Singh, and S. Raina. 2015. Advanced glycation end-products (AGEs): An emerging concern for processed food industries. The Journal of Food Science and Technology 52 (12): 7561–7576.

    CAS  PubMed  Google Scholar 

  14. Poulsen, M.W., R.V. Hedegaard, J.M. Andersen, B. de Courten, S. Bügel, J. Nielsen, L.H. Skibsted, and L.O. Dragsted. 2013. Advanced glycation endproducts in food and their effects on health. Food and chemical toxicology: An international journal published for the British Industrial Biological Research Association 60: 10–37.

    CAS  Google Scholar 

  15. Zhang, Q., J.M. Ames, R.D. Smith, J.W. Baynes, and T.O. Metz. 2009. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. Journal of Proteome Research 8 (2): 754–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh, V.P., A. Bali, N. Singh, and A.S. Jaggi. 2014. Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology 18 (1): 1–14.

    CAS  Google Scholar 

  17. Henning, C., K. Liehr, M. Girndt, C. Ulrich, and M.A. Glomb. 2014. Extending the spectrum of α-dicarbonyl compounds in vivo. The Journal of biological chemistry 289 (41): 28676–28688.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brings, S., T. Fleming, M. Freichel, M.U. Muckenthaler, S. Herzig, and P.P. Nawroth. 2017. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. International Journal of Molecular Sciences 18 (5): 984.

    PubMed Central  Google Scholar 

  19. Thornalley, P.J. 2008. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems–role in ageing and disease. Drug Metabolism and Drug Interactions 23 (1–2): 125–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rowan, S., E. Bejarano, and A. Taylor. 2018. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochimica et biophysica acta Molecular basis of disease 1864 (12): 3631–3643.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, T., D. Zhang, Y. Zeng, T.Y. Huang, H. Xu, and Y. Zhao. 2020. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Molecular neurodegeneration 15 (1): 40.

    PubMed  PubMed Central  Google Scholar 

  22. Chaudhuri, J., Y. Bains, S. Guha, A. Kahn, D. Hall, N. Bose, A. Gugliucci, and P. Kapahi. 2018. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality. Cell Metabolism 28 (3): 337–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fishman, S.L., H. Sonmez, C. Basman, V. Singh, and L. Poretsky. 2018. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Molecular Medicine 24 (1): 59.

    PubMed  PubMed Central  Google Scholar 

  24. Otta, C., K. Jacobsb, E. Hauckec, A.N. Santos, T. Grunea, and A. Simm. 2014. Role of advanced glycation end products in cellular signalling. Redox Biology 2: 411–429.

    Google Scholar 

  25. Iannuzzi, C., G. Irace, and I. Sirangelo. 2014. Differential effects of glycation on protein aggregation and amyloid formation. Frontiers in Molecular Biosciences 1: 9.

    PubMed  PubMed Central  Google Scholar 

  26. Quiñonez-Flores, C.M., S.A. González-Chávez, D. Del Río Nájera, and C. Pacheco-Tena. 2016. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. BioMed Research International 2016: 6097417.

    PubMed  PubMed Central  Google Scholar 

  27. Phaniendra, A., D.B. Jestadi, and L. Periyasamy. 2015. Free radicals: Properties sources targets and their implication in various diseases. Indian journal of clinical biochemistry 30 (1): 11–26.

    CAS  PubMed  Google Scholar 

  28. Filippin, L.I., R. Vercelino, N.P. Marroni, and R.M. Xavier. 2008. Redox signalling and the inflammatory response in rheumatoid arthritis. Clinical and experimental immunology 152 (3): 415–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. da Fonseca, L., V. Nunes-Souza, M. Goulart, and L.A. Rabelo. 2019. Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies. Oxidative medicine and cellular longevity 2019: 7536805.

    PubMed  PubMed Central  Google Scholar 

  30. Wright, H. L., M. Lyon, E.A. Chapman, R.J. Moots, and S.W. Edwards. 2021. Rheumatoid arthritis synovial fluid neutrophils drive inflammation through production of chemokines reactive oxygen species and neutrophil extracellular traps. Frontiers in immunology 11: 584116.

  31. Butterfield, T.A., T.M. Best, and M.A. Merrick. 2006. The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair. Journal of athletic training 41 (4): 457–465.

    PubMed  PubMed Central  Google Scholar 

  32. Selders, G.S., A.E. Fetz, M.Z. Radic, and G.L. Bowlin. 2017. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regenerative biomaterials 4 (1): 55–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Delgado-Rizo, V., M.A. Martínez-Guzmán, L. Iñiguez-Gutierrez, A. García-Orozco, A. Alvarado-Navarro, and M. Fafutis-Morris. 2017. Neutrophil extracellular traps and its implications in inflammation: An overview. Frontiers in Immunology 8: 81.

    PubMed  PubMed Central  Google Scholar 

  34. Fousert, E., R. Toes, and J. Desai. 2020. Neutrophil Extracellular Traps (NETs) Take the central stage in driving autoimmune responses. Cells 9 (4): 915.

    CAS  PubMed Central  Google Scholar 

  35. Vorobjeva, N.V., and B.V. Chernyak. 2020. NETosis: Molecular mechanisms role in physiology and pathology. Biochemistry Biokhimiia 85 (10): 1178–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Metzler, K.D., C. Goosmann, A. Lubojemska, A. Zychlinsky, and V. Papayannopoulos. 2014. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports 8 (3): 883–896.

    CAS  PubMed  Google Scholar 

  37. Sur Chowdhury, C., S. Giaglis, U.A. Walker, A. Buser, S. Hahn, and P. Hasler. 2014. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: Analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis research & therapy 16 (3): R122.

    Google Scholar 

  38. Heidari, F., S. Rabizadeh, A. Rajab, F. Heidari, M. Mouodi, H. Mirmiranpour, A. Esteghamati, and M. Nakhjavani. 2020. Advanced glycation end-products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes. Life sciences 260: 118422.

  39. Khojah, H.M., S. Ahmed, M.S. Abdel-Rahman, and A.B. Hamza. 2016. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free radical biology & medicine 97: 285–291.

    CAS  Google Scholar 

  40. Yan, S.F., S.D. Yan, R. Ramasamy, and A.M. Schmidt. 2009. Tempering the wrath of RAGE: An emerging therapeutic strategy against diabetic complications neurodegeneration and inflammation. Annals of Medicine 41 (6): 408–422.

    CAS  PubMed  Google Scholar 

  41. Xue, J., V. Rai, D. Singer, S. Chabierski, J. Xie, S. Reverdatto, D.S. Burz, A.M. Schmidt, R. Hoffmann, and A. Shekhtman. 2011. Advanced glycation end product recognition by the receptor for AGEs. Structure 19 (5): 722–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yatime, L., and G.R. Andersen. 2013. Structural insights into the oligomerization mode of the human Receptor for Advanced Glycation End-products (RAGE). The FEBS journal 280: 6556–6568. https://doi.org/10.1111/febs.12556.

    Article  CAS  PubMed  Google Scholar 

  43. Chuah, Y.K., R. Basir, H. Talib, T.H. Tie, and N. Nordin. 2013. Receptor for advanced glycation end products and its involvement in inflammatory diseases. International Journal of Inflammation 2013: 403460.

  44. Nadali, M., L. Lyngfelt, M.C. Erlandsson, S.T. Silfversward, K.M.E. Andersson, M.I. Bokarewa, and T. Pullerits. 2021. Low soluble receptor for advanced glycation end products precedes and predicts cardiometabolic events in women with rheumatoid arthritis. Frontiers in Medicine 7: 594622. https://doi.org/10.3389/fmed.2020.594622.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Perrone, A., A. Giovino, J. Benny, and F. Martinelli. 2020. Advanced glycation end products (AGEs): Biochemistry signaling analytical methods and epigenetic effects. Oxidative medicine and cellular longevity 2020: 3818196.

    PubMed  PubMed Central  Google Scholar 

  46. Yap, H.Y., S.Z. Tee, M.M. Wong, S.K. Chow, S.C. Peh, and S.Y. Teow. 2018. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells 7 (10): 161.

    CAS  PubMed Central  Google Scholar 

  47. Chen, J., J. Jing, S. Yu, M. Song, H. Tan, B. Cui, and L. Huang. 2016. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. American journal of translational research 8 (5): 2169–2178.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tarafdar, A., and G. Pula. 2018. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. International journal of molecular sciences 19 (12): 3824.

    PubMed Central  Google Scholar 

  49. Wang, X., S. Yu, C.Y. Wang, Y. Wang, H.X. Liu, Y. Cui, and L.D. Zhang. 2015. Advanced glycation end products induce oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In vitro cellular & developmental biology-Animal 51 (2): 204–209.

    CAS  Google Scholar 

  50. Pérez-Torres, I., L. Manzano-Pech, M.E. Rubio-Ruíz, M.E. Soto, and V. Guarner-Lans. 2020. Nitrosative stress and its association with cardiometabolic disorders. Molecules (Basel, Switzerland) 25 (11): 2555.

    Google Scholar 

  51. Giovino, A., J. Benny, and F. Martinelli. 2020. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity 2020: 18.

    Google Scholar 

  52. Semchyshyn, H.M. 2014. Reactive carbonyl species in vivo: generation and dual biological effects. The Scientific World Journal 2014: 417842.

  53. Hansen, F., F. Galland, F. Lirio, D.F. de Souza, C. Da Ré, R.F. Pacheco, A.F. Vizuete, A. Quincozes-Santos, M.C. Leite, and C.A. Gonçalves. 2017. Methylglyoxal induces changes in the glyoxalase system and impairs glutamate uptake activity in primary astrocytes. Oxidative medicine and cellular longevity 2017: 9574201.

    PubMed  PubMed Central  Google Scholar 

  54. Knani, I., H. Bouzidi, S. Zrour, N. Bergaoui, M. Hammami, and M. Kerkeni. 2018. Methylglyoxal: A relevant marker of disease activity in patients with rheumatoid arthritis. Disease Markers 2018: 8735926.

    PubMed  PubMed Central  Google Scholar 

  55. Schalkwijk, C.G., and C. Stehouwer. 2020. Methylglyoxal a highly reactive dicarbonyl compound in diabetes its vascular complications and other age-related diseases. Physiological reviews 100 (1): 407–461.

    CAS  PubMed  Google Scholar 

  56. Kender, Z., P. Torzsa, K.V. Grolmusz, A. Patócs, A. Lichthammer, M. Veresné Bálint, K. Rácz, and P. Reismann. 2012. A metilglioxál metabolizmus szerepe 2-es típusú cukorbetegségben és szövődményeiben [The role of methylglyoxal metabolism in type-2 diabetes and its complications]. Orvosi hetilap 153 (15): 574–585.

    PubMed  Google Scholar 

  57. Pullerits, R., M. Bokarewa, L. Dahlberg, and A. Tarkowski. 2005. Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Research Therapy 7 (4): R817–R824.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lund, T., A. Svindland, M. Pepaj, A.B. Jensen, J.P. Berg, B. Kilhovd, and K.F. Hanssen. 2011. Fibrinogen may be an important target for methylglyoxal-derived AGE modification in elastic arteries of humans. Diabetes & vascular disease research 8 (4): 284–294.

    Google Scholar 

  59. Shaw, J.N., J.W. Baynes, and S.R. Thorpe. 2002. N epsilon-(carboxymethyl) lysine (CML) as a biomarker of oxidative stress in long-lived tissue proteins. Methods in Molecular Biology 186: 129–137.

    CAS  PubMed  Google Scholar 

  60. Drinda, S., S. Franke, C.C. Canet, P. Petrow, R. Bräuer, C. Hüttich, G. Stein, and G. Hein. 2002. Identification of the advanced glycation end products N(epsilon)-carboxymethyllysine in the synovial tissue of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases 61 (6): 488–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Knani, I., H. Bouzidi, S. Zrour, N. Bergaoui, M. Hammami, and M. Kerkeni. 2018. Increased serum concentrations of Nɛ-carboxymethyllysine are related to the presence and the severity of rheumatoid arthritis. Annals of clinical biochemistry 55 (4): 430–436.

    CAS  PubMed  Google Scholar 

  62. Sternberg, Z., C. Hennies, D. Sternberg, P. Wang, P. Kinkel, D. Hojnacki, B. Weinstock-Guttmann, and F. Munschauer. 2010. Diagnostic potential of plasma carboxymethyllysine and carboxyethyllysine in multiple sclerosis. Journal of Neuroinflammation 7: 72.

    PubMed  PubMed Central  Google Scholar 

  63. Kinoshita, S., K. Mera, H. Ichikawa, S. Shimasaki, M. Nagai, Y. Taga, K. Iijima, S. Hattori, Y. Fujiwara, J.I. Shirakawa, and R. Nagai. 2019. Nω -(carboxymethyl)arginine is one of the dominant advanced glycation end products in glycated collagens and mouse tissues. Oxidative Medicine and Cellular Longevity 2019: 9073451.

    PubMed  PubMed Central  Google Scholar 

  64. Ricard-Blum, S. 2011. The collagen family. Cold Spring Harbor Perspectives in Biology 3 (1): a004978.

  65. Reigle, K.L., G. Di Lullo, K.R. Turner, J.A. Last, I. Chervoneva, D.E. Birk, J.L. Funderburgh, E. Elrod, M.W. Germann, C. Surber, R.D. Sanderson, and J.D. San Antonio. 2008. Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion. Journal of Cellular Biochemistry 104 (5): 1684–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Braun, M., H. Hulejová, J. Gatterová, M. Filková, A. Pavelková, O. Sléglová, N. Kaspříková, J. Vencovský, K. Pavelka, and L. Senolt. 2012. Pentosidine, an advanced glycation end-product, may reflect clinical and morphological features of hand osteoarthritis. The Open Rheumatology Journal 6: 64–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Takahashi, M., M. Suzuki, K. Kushida, S. Miyamoto, and T. Inoue. 1997. Relationship between pentosidine levels in serum and urine and activity in rheumatoid arthritis. The British Journal of Rheumatology 36 (6): 637–642.

    CAS  PubMed  Google Scholar 

  68. Miyata, T., N. Ishiguro, Y. Yasuda, T. Ito, M. Nangaku, H. Iwata, and K. Kurokawa. 1998. Increased pentosidine, an advanced glycation end product, in plasma and synovial fluid from patients with rheumatoid arthritis and its relation with inflammatory markers. Biochemical and biophysical research communications 244 (1): 45–49.

    CAS  PubMed  Google Scholar 

  69. Chen, J.R., M. Takahashi, M. Suzuki, K. Kushida, S. Miyamoto, and T. Inoue. 1999. Pentosidine in synovial fluid in osteoarthritis and rheumatoid arthritis: Relationship with disease activity in rheumatoid arthritis. Journal of Rheumatology 25 (12): 2440–2444.

    Google Scholar 

  70. Neelofar, K., and J. Ahmad. 2015. Amadori albumin in diabetic nephropathy. Indian Journal of Endocrinology and Metabolism 19 (1): 39–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Arif, Z., M.Y. Arfat, J. Ahmad, A. Zaman, S.N. Islam, and M.A. Khan. 2015. Relevance of nitroxidation of albumin in rheumatoid arthritis: A biochemical and clinical study. Journal of Clinical & Cellular Immunology 6: 2.

    Google Scholar 

  72. Tarannum, A., Z. Arif, K. Alam, S. Ahmad, and M. Uddin. 2019. Nitroxidized-albumin advanced glycation end product and rheumatoid arthritis. Archives of Rheumatology 34 (4): 461–475.

    PubMed  PubMed Central  Google Scholar 

  73. Baret, P., F. Le Sage, C. Planesse, O. Meilhac, A. Devin, E. Bourdon, and P. Rondeau. 2017. Glycated human albumin alters mitochondrial respiration in preadipocyte 3T3-L1 cells. BioFactors (Oxford England) 43 (4): 577–592.

    CAS  Google Scholar 

  74. Panezai, J., M. Altamash, P.E. Engstrӧm, and A. Larsson. 2020. Association of glycated proteins with inflammatory proteins and periodontal disease parameters. Journal of Diabetes Research 2020: 6450742.

    PubMed  PubMed Central  Google Scholar 

  75. Babu, N.P., Z. Bobby, N. Selvaraj, and B.N. Harish. 2006. Increased fructosamine in non-diabetic rheumatoid arthritis patients: Role of lipid peroxides and glutathione. Clinical Chemistry and Laboratory Medicine 44 (7): 848–852.

    CAS  PubMed  Google Scholar 

  76. Gkogkolou, P., and M. Böhm. 2012. Advanced glycation end products: Key players in skin aging? Dermatoendocrinology 4 (3): 259–270.

    CAS  Google Scholar 

  77. Monnier, V.M. 2006. The fructosamine 3-kinase knockout mouse: A tool for testing the glycation hypothesis of intracellular protein damage in diabetes and aging. Biochemical Journal 399 (2): e11–e13.

    CAS  PubMed Central  Google Scholar 

  78. Legrand, C., U. Ahmed, A. Anwar, K. Rajpoot, S. Pasha, C. Lambert, R.K. Davidson, I.M. Clark, P.J. Thornalley, Y. Henrotin, and N. Rabbani. 2018. Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo. Arthritis Research & Therapy 20: 131.

    Google Scholar 

  79. Monnier, V.M., W. Sun, D.R. Sell, X. Fan, I. Nemet, and S. Genuth. 2014. Glucosepane: A poorly understood advanced glycation end product of growing importance for diabetes and its complications. Clinical Chemistry and Laboratory Medicine 52 (1): 21–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Genuth, S., W. Sun, P. Cleary, X. Gao, D.R. Sell, J. Lachin, and V.M. Monnier. 2015. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes 64 (1): 266–278.

    CAS  PubMed  Google Scholar 

  81. Tai, A.W., and M.M. Newkirk. 2000. An autoantibody targeting glycated IgG is associated with elevated serum immune complexes in rheumatoid arthritis (RA). Clinical and Experimental Immunology 120 (1): 188–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Newkirk, M.M., R. Goldbach-Mansky, J. Lee, J. Hoxworth, A. McCoy, C. Yarboro, J. Klippel, and H.S. El-Gabalawy. 2003. Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Research & Therapy 5 (2): R82–R90.

    CAS  Google Scholar 

  83. Newkirk, M.M., K. LePage, T. Niwa, and L. Rubin. 1998. Advanced glycation endproducts (AGE) on IgG, a target for circulating antibodies in North American Indians with rheumatoid arthritis (RA). Cellular and molecular biology 44 (7): 1129–1138.

    CAS  PubMed  Google Scholar 

  84. Byun, K., Y. Yoo, M. Son, J. Lee, G.B. Jeong, Y.M. Park, G.H. Salekdeh, and B. Lee. 2017. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacology & Therapeutics 177: 44–55.

    CAS  Google Scholar 

  85. Yamin, G., K. Ono, M. Inayathullah, and D.B. Teplow. 2008. Amyloid beta-protein assembly as a therapeutic target of Alzheimer’s disease. Current Pharmaceutical Design 14 (30): 3231–3246.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. O’Brien, R.J., and P.C. Wong. 2011. Amyloid precursor protein processing and Alzheimer’s disease. Annual Review of Neuroscience 34: 185–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferraccioli, G., A. Carbonella, E. Gremese, and S. Alivernini. 2012. Rheumatoid arthritis and Alzheimer’s disease: Genetic and epigenetic links in inflammatory regulation. Discovery Medicine 14 (79): 379–388.

    PubMed  Google Scholar 

  88. Huang, Y.M., X.Z. Hong, J. Shen, L.J. Geng, Y.H. Pan, W. Ling, and H.L. Zhao. 2020. Amyloids in site-specific autoimmune reactions and inflammatory responses. Frontiers in Immunology 10: 2980.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang, D., R. Kang, H.J. Zeh, and M.T. Lotze. 2010. High-mobility group box 1 and cancer. Biochimica et Biophysica Acta 1799 (1–2): 131–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annual Review of Immunology 29: 139–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Weber, D.J., Y.M. Allette, D.S. Wilkes, and F.A. White. 2015. The HMGB1-RAGE inflammatory pathway: Implications for brain injury-induced pulmonary dysfunction. Antioxidants & Redox Signaling 23 (17): 1316–1328.

    CAS  Google Scholar 

  92. Sun, X.H., Y. Liu, Y. Han, and J. Wang. 2016. Expression and significance of high-mobility group protein B1 (HMGB1) and the receptor for advanced glycation end-product (RAGE) in knee osteoarthritis. Medical Science Monitor 22: 2105–2112.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Qian, B., H. Huang, M. Cheng, T. Qin, T. Chen, and J. Zhao. 2020. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury. European Journal of Medical Research 25 (1): 8.

    PubMed  PubMed Central  Google Scholar 

  94. Tang, D., R. Kang, H.J. Zeh, and M.T. Lotze. 2011. High-mobility group box 1 oxidative stress and disease. Antioxidants & redox signaling 14 (7): 1315–1335.

    CAS  Google Scholar 

  95. Zhu, X.M., Y.M. Yao, H.P. Liang, S. Xu, N. Dong, Y. Yu, and Z.Y. Sheng. 2009. The effect of high mobility group box-1 protein on splenic dendritic cell maturation in rats. Journal of interferon & cytokine research 29 (10): 677–686.

    CAS  Google Scholar 

  96. Yoshino, S., E. Sasatomi, and M. Ohsawa. 2000. Bacterial lipopolysaccharide acts as an adjuvant to induce autoimmune arthritis in mice. Immunology 99 (4): 607–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fang, W., D. Bi, R. Zheng, N. Cai, H. Xu, R. Zhou, J. Lu, M. Wan, and X. Xu. 2017. Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Scientific Reports 7 (1): 1663.

  98. Wahamaa, H., H. Schierbeck, H.S. Hreggvidsdottir, K. Palmblad, A.C. Aveberger, U. Andersson, and H.E. Harris. 2011. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis research & therapy 13 (4): R136.

    Google Scholar 

  99. He, Z.W., Y.H. Qin, Z.W. Wang, Y. Chen, Q. Shen, and S.M. Dai. 2013. HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-κB signaling pathways. Mediators of Inflammation 2013: 596716.

  100. Bednarczyk, M., H. Stege, S. Grabbe, and M. Bros. 2020. β2 Integrins-multi-functional leukocyte receptors in health and disease. International Journal of Molecular Sciences 21 (4): 1402.

    CAS  PubMed Central  Google Scholar 

  101. Schittenhelm, L., C.M. Hilkens, and V.L. Morrison. 2017. β2 integrins as regulators of dendritic cell monocyte and macrophage function. Frontiers in Immunology 8: 1866.

    PubMed  PubMed Central  Google Scholar 

  102. Kassaar, O., M. Pereira Morais, S. Xu, E.L. Adam, R.C. Chamberlain, B. Jenkins, T.D. James, P.T. Francis, S. Ward, R.J. Williams, and J. van den Elsen. 2017. Macrophage migration inhibitory factor is subjected to glucose modification and oxidation in Alzheimer’s disease. Scientific Reports 7: 42874.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Donato, R., B.R. Cannon, G. Sorci, F. Riuzzi, K. Hsu, D.J. Weber, and C.L. Geczy. 2013. Functions of S100 proteins. Current Molecular Medicine 13 (1): 24–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vogl, T., A.L. Gharibyan, and L.A. Morozova-Roche. 2012. Pro-inflammatory S100A8 and S100A9 proteins: Self-assembly into multifunctional native and amyloid complexes. International Journal of Molecular Sciences 13 (3): 2893–2917.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Austermann, J., S. Zenker, and J. Roth. 2017. S100-alarmins: Potential therapeutic targets for arthritis. Expert Opinion on Therapeutic Targets 21 (7): 738–750.

    Google Scholar 

  106. Wang, Q., W. Chen, and J. Lin. 2019. The role of calprotectin in rheumatoid arthritis. Journal of Translational Medicine 7 (4): 126–131.

    Google Scholar 

  107. Chen, Y.S., W. Yan, C.L. Geczy, M.A. Brown, and R. Thomas. 2009. Serum levels of soluble receptor for advanced glycation end products and of S100 proteins are associated with inflammatory, autoantibody, and classical risk markers of joint and vascular damage in rheumatoid arthritis. Arthritis research & therapy 11 (2): R39.

    Google Scholar 

  108. Bianchi, R., E. Kastrisianaki, I. Giambanco, and R. Donato. 2011. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. The Journal of biological chemistry 286 (9): 7214–7226.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Navratilova, A., V. Becvar, J. Baloun, D. Damgaard, C.H. Nielsen, D. Veigl, K. Pavelka, J. Vencovsky, L. Šenolt, and L. Andres Cerezo. 2021. S100A11 (calgizzarin) is released via NETosis in rheumatoid arthritis (RA) and stimulates IL-6 and TNF secretion by neutrophils. Scientific reports 11 (1): 6063.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Xue, J., R. Ray, D. Singer, D. Böhme, D.S. Burz, V. Rai, R. Hoffmann, and A. Shekhtman. 2014. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry 53 (20): 3327–3335.

    CAS  PubMed  Google Scholar 

  111. Bourajjaj, M., C.D. Stehouwer, V.W. van Hinsbergh, and C.G. Schalkwijk. 2003. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochemical Society Transactions 31 (Pt 6): 1400–1402.

    CAS  PubMed  Google Scholar 

  112. Wetzels, S., T. Vanmierlo, J.L.J.M. Scheijen, J. van Horssen, S. Amor, V. Somers, C.G. Schalkwijk, J.J.A. Hendriks, and K. Wouters. 2019. Methylglyoxal-derived advanced glycation endproducts accumulate in multiple sclerosis lesions. Frontiers in Immunology 10: 855.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lugo-Huitrón, R., P. Ugalde Muñiz, B. Pineda, J. Pedraza-Chaverrí, C. Ríos, and V. Pérez-de la Cruz. 2013. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxidative Medicine and Cellular Longevity 2013: 104024.

  114. Bansal, Y., R. Singh, I. Parhar, A. Kuhad, and T. Soga. 2019. Quinolinic acid and nuclear factor erythroid 2-related factor 2 in depression: Role in neuroprogression. Frontiers in Pharmacology 10: 452.

    PubMed  PubMed Central  Google Scholar 

  115. Huang, Y.S., J. Ogbechi, F.I. Clanchy, R.O. Williams, and T.W. Stone. 2020. IDO and kynurenine metabolites in peripheral and CNS disorders. Frontiers in Immunology 11: 388.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Salgado-Polo, F., A. Fish, M.T. Matsoukas, T. Heidebrecht, W.J. Keune, and A. Perrakis. 2018. Lysophosphatidic acid produced by autotaxin acts as an allosteric modulator of its catalytic efficiency. Journal of Biological Chemistry 293 (37): 14312–14327.

    CAS  Google Scholar 

  117. Miyabe, C., Y. Miyabe, J. Nagai, N.N. Miura, N. Ohno, J. Chun, R. Tsuboi, H. Ueda, M. Miyasaka, N. Miyasaka, and T. Nanki. 2019. Abrogation of lysophosphatidic acid receptor 1 ameliorates murine vasculitis. Arthritis Research & Therapy 21 (1): 191.

  118. Miyabe, Y., C. Miyabe, Y. Iwai, A. Takayasu, S. Fukuda, W. Yokoyama, J. Nagai, M. Jona, Y. Tokuhara, R. Ohkawa, H.M. Albers, H. Ovaa, J. Aoki, J. Chun, Y. Yatomi, H. Ueda, M. Miyasaka, N. Miyasaka, and T. Nanki T. 2013. Necessity of lysophosphatidic acid receptor 1 for development of arthritis. Arthritis & Rheumatology 65 (8): 2037–2047.

  119. Rai, V., F. Touré, S. Chitayat, R. Pei, F. Song, Q. Li, J. Zhang, R. Rosario, R. Ramasamy, W.J. Chazin, and A.M. Schmidt. 2012. Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. Journal of Experimental Medicine 209 (13): 2339–2350.

    CAS  Google Scholar 

  120. Howard, E.W., R. Benton, J. Ahern-Moore, and J.J. Tomasek. 1996. Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Experimental cell research 228 (1): 132–137.

    CAS  PubMed  Google Scholar 

  121. Tatsuro, E., K. Kohei, Y. Takumi, F. Mami, G. Katsumasa, and H. Tatsuya. 2021. The Effect of Glycation Stress on Skeletal Muscle. Intechopen.

  122. Ahmed, A.K., S. Muniandy, and I. Ismail. 2007. Role of N-(carboxymethyl) lysine in the development of ischemic heart disease in type 2 diabetes mellitus. Journal of clinical biochemistry and nutrition 41 (2): 97–105.

    CAS  Google Scholar 

  123. Vytášek, R., L. Sedova, and V. Vilím. 2010. Increased concentration of two different advanced glycation end-products detected by enzyme immunoassays with new monoclonal antibodies in sera of patients with rheumatoid arthritis. BMC Musculoskeletal Disorder 11: 83.

    Google Scholar 

  124. Hitchon, C.A., and H.S. El-Gabalawy. 2004. Oxidation in rheumatoid arthritis. Arthritis Research & Therapy 6 (6): 265–278.

    Google Scholar 

  125. Chimenti, M.S., P. Triggianese, P. Conigliaro, E. Candi, G. Melino, and R. Perricone. 2015. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death & Disease 6 (9): e1887.

  126. Virella, G., S.R. Thorpe, N.L. Alderson, E.M. Stephan, D. Atchley, F. Wagner, M.F. Lopes-Virella, and DCCT/EDIC Research Group. 2003. Autoimmune response to advanced glycosylation end-products of human LDL. Journal of Lipid Research 44 (3): 487–493.

    CAS  PubMed  Google Scholar 

  127. Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, and G. Münch. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging 32 (5): 763–777.

    CAS  PubMed  Google Scholar 

  128. Yamagishi, S.I., N. Nakamura, and T. Matsui. 2017. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. Journal of Diabetes 9 (2): 141–148.

    CAS  PubMed  Google Scholar 

  129. Saudek, D.M., and J. Kay. 2005. Advanced glycation endproducts and osteoarthritis. Current Rheumatology Reports 5 (1): 33–40.

    Google Scholar 

  130. Dattilo, B.M., G. Fritz, E. Leclerc, C.W. Kooi, C.W. Heizmann, and W.J. Chazin. 2007. The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 46 (23): 6957–6970.

    CAS  PubMed  Google Scholar 

  131. Bierhaus, A., S. Schiekofer, M. Schwaninger, M. Andrassy, P.M. Humpert, J. Chen, M. Hon, T. Luther, T. Henle, I. Klöting, M. Morcos, M. Hofmann, H. Tritschler, B. Weigle, M. Kasper, M. Smith, G. Perry, A.M. Schmidt, D.M. Stern, H.U. Häring, E. Schleicher, and P.P. Nawroth. 2001. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50 (12): 2792–2808.

    CAS  PubMed  Google Scholar 

  132. Ramasamy, R., S.F. Yan, and A.M. Schmidt. 2009. RAGE: Therapeutic target and biomarker of the inflammatory response–the evidence mounts. Journal of Leukocyte Biology 86 (3): 505–512.

    CAS  PubMed  Google Scholar 

  133. Bongarzone, S., V. Savickas, F. Luzi, and A.D. Gee. 2017. Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. Journal of Medicinal Chemistry 60 (17): 7213–7232.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu, C., X. Du, L. Tang, J. Wu, W. Zhao, X. Guo, D. Liu, W. Liu, H. Helmby, G. Chen, and Z. Wang. 2020. Schistosoma japonicum SjE16.7 protein promotes tumor development via the receptor for advanced glycation end products (RAGE). Frontiers in Immunology 11: 1767.

  135. Heo, Y.J., H.J. Oh, Y.O. Jung, M.L. Cho, S.Y. Lee, J.G. Yu, M.K. Park, H.R. Kim, S.H. Lee, S.H. Park, and H.Y. Kim. 2011. The expression of the receptor for advanced glycation end-products (RAGE) in RA-FLS is induced by IL-17 via Act-1. Arthritis Research & Therapy 13 (4): R113.

    CAS  Google Scholar 

  136. Bednarska, K., and I. Fecka.  2021. Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake. International Journal of Molecular Sciences 22 :10026

  137. Davies, S.S., and L.S. Zhang. 2017. Reactive carbonyl species scavengers-novel therapeutic approaches for chronic diseases. Current pharmacology reports 3 (2): 51–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nenna, A., F. Nappi, S.S. Avtaar Singh, F.W. Sutherland, F. Di Domenico, M. Chello, and C. Spadaccio. 2015. Pharmacologic approaches against advanced glycation end products (AGEs) in diabetic cardiovascular disease. Research in cardiovascular medicine 4 (2): e26949.

  139. Zieman, S.J., V. Melenovsky, L. Clattenburg, M.C. Corretti, A. Capriotti, G. Gerstenblith, and D.A. Kass. 2007. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. Journal of hypertension 25 (3): 577–583.

    CAS  PubMed  Google Scholar 

  140. Huebschmann, A.G., J.G. Regensteiner, H. Vlassara, and J.E. Reusch. 2006. Diabetes and advanced glycoxidation end products. Diabetes Care 29 (6): 1420–1432.

    CAS  PubMed  Google Scholar 

  141. Berrone, E., E. Beltramo, C. Solimine, A.U. Ape, and M. Porta. 2006. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. The Journal of biological chemistry 281 (14): 9307–9313.

    CAS  PubMed  Google Scholar 

  142. Ramis, R., J. Ortega-Castro, C. Caballero, R. Casasnovas, A. Cerrillo, B. Vilanova, M. Adrover, and J. Frau. 2019. How does pyridoxamine inhibit the formation of advanced glycation end products? The role of its primary antioxidant activity. Antioxidants (Basel Switzerland) 8 (9): 344.

    CAS  PubMed Central  Google Scholar 

  143. Yoshii, K., K. Hosomi, and K, Sawane, and J. Kunisawa. 2019. Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. Frontiers in nutrition 6: 48.

    PubMed  PubMed Central  Google Scholar 

  144. Syngle, A., K. Vohra, N. Garg, L. Kaur, and P. Chand. 2012. Advanced glycation end-products inhibition improves endothelial dysfunction in rheumatoid arthritis. International journal of rheumatic diseases 15 (1): 45–55.

    CAS  PubMed  Google Scholar 

  145. Price, D.L., P.M. Rhett, S.R. Thorpe, and J.W. Baynes. 2001. Chelating activity of advanced glycation end-product inhibitors. The Journal of biological chemistry 276 (52): 48967–48972.

    CAS  PubMed  Google Scholar 

  146. Pullerits, R., M. Bokarewa, L. Dahlberg, and A. Tarkowski. 2005. Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis research & therapy 7 (4): R817–R824.

    CAS  Google Scholar 

  147. Chen, J.H., X. Lin, C. Bu, and X. Zhang. 2018. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutrition & metabolism 15: 72.

    Google Scholar 

  148. Van Putte, L., S. De Schrijver, and P. Moortgat. 2016. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: A systematic review. Scars burns & healing 2: 2059513116676828.

    Google Scholar 

  149. Mirmiranpour, H., S.Z. Bathaie, S. Khaghani, M. Nakhjavani, and A. Kebriaeezadeh. 2021. L-lysine supplementation improved glycemic control, decreased protein glycation, and insulin resistance in type 2 diabetic patients. International Journal of Diabetes in Developing Countries.

  150. Mouterde, G., N. Rincheval, C. Lukas, C. Daien, A. Saraux, P. Dieudé, J. Morel, and B. Combe. 2019. Outcome of patients with early arthritis without rheumatoid factor and ACPA and predictors of rheumatoid arthritis in the ESPOIR cohort. Arthritis Research & Therapy 21 (1): 140.

    Google Scholar 

  151. Jounai, N., K. Kobiyama, F. Takeshita, and K.J. Ishii. 2013. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Frontiers in Cellular and Infection Microbiology 2: 168.

    PubMed  PubMed Central  Google Scholar 

  152. de Vos, L.C., J.D. Lefrandt, R.P. Dullaart, C.J. Zeebregts, and A.J. Smit. 2016. Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis 254: 291–299.

    PubMed  Google Scholar 

  153. Gopal, P., N.L. Reynaert, J.L. Scheijen, L. Engelen, C.G. Schalkwijk, F.M. Franssen, E.F. Wouters, and E.P. Rutten. 2014. Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. The European respiratory journal 43 (2): 430–438.

    CAS  PubMed  Google Scholar 

  154. Băbţan, A.M., A. Ilea, B.A. Boşca, M. Crişan, N.B. Petrescu, M. Collino, R.M. Sainz, J.Q. Gerlach, and R.S. Câmpian. 2019. Advanced glycation end products as biomarkers in systemic diseases: Premises and perspectives of salivary advanced glycation end products. Biomarkers in medicine 13 (6): 479–495.

    PubMed  Google Scholar 

  155. Hanssen, N.M., K. Wouters, M.S. Huijberts, M.J. Gijbels, J.C. Sluimer, J.L. Scheijen, S. Heeneman, E.A. Biessen, M.J. Daemen, M. Brownlee, D.P. de Kleijn, C.D. Stehouwer, G. Pasterkamp, and C.G. Schalkwijk. 2014. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. European heart journal 35 (17): 1137–1146.

    CAS  PubMed  Google Scholar 

  156. Martinez Fernandez, A., L. Regazzoni, M. Bioschi, E. Gianazza, P. Agostoni, G. Aldini, and C. Banfi. 2019. Pro-oxidant and pro-inflammatory effects of glycated albumin on cardiomyocytes. Free radical biology & medicine 144: 245–255.

    CAS  Google Scholar 

  157. Park, J.S., J. Song, Y.B. Park, S.K. Lee, and S.W. Lee. 2017. Glycated albumin increases with disease activity in rheumatoid factor positive rheumatoid arthritis patients with normal fasting glucose and HbA1c. Joint, Bone, Spine 84 (1): 115–118.

    CAS  Google Scholar 

  158. Ben-Hadj-Mohamed, M., S. Khelil, M. Ben Dbibis, L. Khlifi, H. Chahed, S. Ferchichi, E. Bouajina, and A. Miled. 2017. Hepatic proteins and inflammatory markers in rheumatoid arthritis patients. Iranian Journal of Public Health 46 (8): 1071–1078.

    PubMed  PubMed Central  Google Scholar 

  159. Bergum, B., C. Koro, N. Delaleu, M. Solheim, A. Hellvard, V. Binder, R. Jonsson, V. Valim, D.S. Hammenfors, M.V. Jonsson, and P. Mydel. 2016. Antibodies against carbamylated proteins are present in primary Sjögren’s syndrome and are associated with disease severity. Annals of the Rheumatic Diseases 75 (8): 1494–1500.

    CAS  PubMed  Google Scholar 

  160. Dunn, E.J., H. Philippou, R.A. Ariëns, and P.J. Grant. 2006. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia 49 (5): 1071–1080.

    CAS  PubMed  Google Scholar 

  161. Lapolla, A., D. Fedele, M. Garbeglio, L. Martano, R. Tonani, R. Seraglia, D. Favretto, M.A. Fedrigo, and P. Traldi. 2000. Matrix-assisted laser desorption/ionization mass spectrometry, enzymatic digestion and molecular modeling in the study of nonenzymatic glycation of IgG. Journal of the American Society for Mass Spectrometry 11 (2): 153–159.

    CAS  PubMed  Google Scholar 

  162. Spiller, S., Y. Li, M. Blüher, L. Welch, and R. Hoffmann. 2018. Diagnostic accuracy of protein glycation sites in long-term controlled patients with type 2 diabetes mellitus and their prognostic potential for early diagnosis. Pharmaceuticals (Basel) 11 (2): 38.

    Google Scholar 

  163. Nobécourt, E., F. Tabet, G. Lambert, R. Puranik, S. Bao, L. Yan, M.J. Davies, B.E. Brown, A.J. Jenkins, G.J. Dusting, D.J. Bonnet, L.K. Curtiss, P.J. Barter, and K.A. Rye. 2010. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arteriosclerosis thrombosis and vascular biology 30 (4): 766–772.

    Google Scholar 

  164. Sabitha, D., E. Dawson, S. Tiwari, P. Swetha, S.M. Naushad, K.S. Baba, S. Sai, I.K. Mohan, and G.U. Rani. 2020. Study of glycation of transferrin and its effect on biomarkers of iron status in uncontrolled diabetes mellitus patients. Journal of Clinical & Diagnostic Research 14 (8): BC06-BC09.

  165. Kumar, S., and M. Dikshit. 2019. Metabolic insight of neutrophils in health and disease. Frontiers in immunology 10: 2099.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Najafizadeh, S.R., K. Amiri, M. Moghaddassi, S. Khanmohammadi, H. Mirmiranpour, and M. Nakhjavani. 2021. Advanced glycation end products advanced oxidation protein products and ferric reducing ability of plasma in patients with rheumatoid arthritis: A focus on activity scores. Clinical Rheumatology 40: 4019–4026. https://doi.org/10.1007/s10067-021-05771-y.

    Article  PubMed  Google Scholar 

  167. Schroter, D., and A. Hohn. 2018. Role of advanced glycation end products in carcinogenesis and their therapeutic implications. Current Pharmaceutical Design 24 (44): 5245–5251.

    PubMed  Google Scholar 

  168. Li, Y., M.S. Khan, F. Akhter, F.M. Husain, S. Ahmad, and L. Chen. 2019. The non-enzymatic glycation of LDL proteins results in biochemical alterations - a correlation study of Apo B100-AGE with obesity and rheumatoid arthritis. International Journal of Biological Macromolecules 122: 195–200.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Council of Scientific and Industrial Research (CSIR), and Department of Science and Technology, Government of India, New Delhi, India, for providing financial support. Mr Monu received fellowship support from CSIR, New Delhi. Ms Prachi Agnihotri received fellowship from DST-SERB project GAP0212. We also thank Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India, for research and Academy of Scientific and Innovative Research (AcSIR), India for the academic support.

Funding

We would like to acknowledge the Science and Engineering Research Board-Department of Science and Technology (SERB-DST), New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Monu drafted the manuscript. Monu, Prachi Agnihotri, and Dr. Sagarika Biswas edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sagarika Biswas.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both Monu and Prachi Agnihotri contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monu, Agnihotri, P. & Biswas, S. AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 45, 477–496 (2022). https://doi.org/10.1007/s10753-021-01589-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01589-7

KEY WORDS

Navigation