Skip to main content
Log in

Vitamin D Combined with Pioglitazone Mitigates Type-2 Diabetes-induced Hepatic Injury Through Targeting Inflammation, Apoptosis, and Oxidative Stress

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammation is a major pathophysiological factor in development of type-2 diabetes mellitus (T2DM). Vitamin D (VITD) plays an imperative role in modulation of several inflammatory responses. The current study aimed to investigate the possible beneficial effects of coadministration of VITD with pioglitazone (PIO), a PPAR-γ agonist, in fructose/streptozotocin (F/STZ) T2DM model in male Wistar rats. T2DM was induced by maintaining rats on 10% (w/v) fructose in drinking water for 9 weeks with an intraperitoneal injection of sub-diabetogenic dose of STZ (35 mg/kg) by the end of the fourth week. One week after STZ injection, PIO (10 mg/kg/day) alone or with VITD (500 IU/kg/day) was administered orally to diabetic rats till the end of the experiment. Blood samples were collected, livers were homogenized to determine biochemical parameters, and samples of livers were fixed in 10% formalin in saline for histological examination. Administration of PIO alone improved diabetes-induced inflammatory and oxidative states besides controlling hyperglycemia and decreasing apoptosis. Coadministration of VIT D with PIO promoted additional improvement in glycemic and lipid profiles, provided further control on diabetic-induced hepatic inflammation evident by downregulating TLR2, TLR4, and IKK-β while upregulating IκB-α expression and reducing inflammatory cytokines namely; NF-κB, TNF-α, IL-6, and IL-1β, decreasing apoptosis and oxidative stress by hampering caspase-3 and MDA contents, respectively, and improved liver histology than PIO alone. These beneficial effects of VIT D may expand its use by diabetics combined with antidiabetic drugs due to its anti-inflammatory, antioxidant, and antiapoptotic properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Available.

Code Availability

Not applicable.

REFERENCES

  1. Scheen, A.J. 2003. Pathophysiology of type 2 diabetes. Acta Clinica Belgica 58: 335–341. https://doi.org/10.1179/acb.2003.58.6.001.

    Article  CAS  PubMed  Google Scholar 

  2. Kaku, K. 2010. Pathophysiology of type 2 diabetes and its treatment policy. Japan Medical Association Journal 60: 361–368.

    Google Scholar 

  3. Robbins, G.R., H. Wen, and J.P.-Y. Ting. 2014. Inflammasomes and metabolic disorders: Old genes in modern diseases. Molecular Cell 54: 297–308. https://doi.org/10.1016/J.MOLCEL.2014.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gundala, N.K.V., V.G.M. Naidu, and U.N. Das. 2018. Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochemical and Biophysical Research Communications 496: 105–113. https://doi.org/10.1016/j.bbrc.2018.01.007.

    Article  CAS  PubMed  Google Scholar 

  5. Navale, A.M., D. Archana, and N. Paranjape. 2013. Role of inflammation in development of diabetic complications and commonly used markers with respect to diabetic complications. International Journal of Pharmacy and Pharmaceutical Sciences 5 (Suppl 2): 1–5.

    Google Scholar 

  6. Giulietti, A., E. van Etten, L. Overbergh, K. Stoffels, R. Bouillon, and C. Mathieu. 2007. Monocytes from type 2 diabetic patients have a pro-inflammatory profile: 1 25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Research and Clinical Practice 77: 47–57. https://doi.org/10.1016/j.diabres.2006.10.007.

    Article  CAS  PubMed  Google Scholar 

  7. Gill, R., A. Tsung, and T. Billiar. 2010. Linking oxidative stress to inflammation: Toll-like receptors. Free Radical Biology and Medicine 48: 1121–1132. https://doi.org/10.1016/j.freeradbiomed.2010.01.006.

    Article  CAS  PubMed  Google Scholar 

  8. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nature Immunology 11: 373–384. https://doi.org/10.1038/ni.1863.

    Article  CAS  PubMed  Google Scholar 

  9. Jialal, I., and H. Kaur. 2012. The role of toll-like receptors in diabetes-induced inflammation: Implications for vascular complications. Current Diabetes Reports 12: 172–179. https://doi.org/10.1007/s11892-012-0258-7.

    Article  CAS  Google Scholar 

  10. Dasu, M.R., S. Ramirez, and R.R. Isseroff. 2012. Toll-like receptors and diabetes: A therapeutic perspective. Clinical Science 122: 203–214. https://doi.org/10.1042/CS20110357.

    Article  CAS  PubMed  Google Scholar 

  11. Sepehri, Z., Z. Kiani, A.A. Nasiri, and F. Kohan. 2016. Toll-like receptor 2 and type 2 diabetes. Cellular & Molecular Biology Letters 21: 2. https://doi.org/10.1186/s11658-016-0002-4.

    Article  CAS  Google Scholar 

  12. Waugh, J., G.M. Keating, G.L. Plosker, S. Easthope, and D.M. Robinson. 2006. Pioglitazone. Drugs 66: 85–109. https://doi.org/10.2165/00003495-200666010-00005.

    Article  CAS  PubMed  Google Scholar 

  13. Ko, G.J., Y.S. Kang, S.Y. Han, M.H. Lee, H.K. Song, K.H. Han, et al. 2008. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrology Dialysis Transplantation 23: 2750–2760. https://doi.org/10.1093/ndt/gfn157.

    Article  CAS  Google Scholar 

  14. Holick, M.F., and T.C. Chen. 2008. Vitamin D deficiency: A worldwide problem with health consequences. The American Journal of Clinical Nutrition 87: 1080S-1086S. https://doi.org/10.1093/ajcn/87.4.1080S.

    Article  CAS  PubMed  Google Scholar 

  15. Haussler, M.R., C.A. Haussler, L. Bartik, G.K. Whitfield, J.-C. Hsieh, S. Slater, et al. 2008. Vitamin D receptor: Molecular signaling and actions of nutritional ligands in disease prevention. Nutrition Reviews 66: S98–S112. https://doi.org/10.1111/j.1753-4887.2008.00093.x.

    Article  PubMed  Google Scholar 

  16. Holick, M.F. 2007. Vitamin D Deficiency. New England Journal of Medicine 357: 266–281. https://doi.org/10.1056/NEJMra070553.

    Article  CAS  Google Scholar 

  17. Caprio, M., M. Infante, M. Calanchini, C. Mammi, and A. Fabbri. 2017. Vitamin D: Not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eating and Weight Disorders Studies on Anorexia Bulimia and Obesity 22: 27–41. https://doi.org/10.1007/s40519-016-0312-6.

    Article  Google Scholar 

  18. Alvarez, J.A., and A. Ashraf. 2010. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis. International Journal of Endocrinology 2010: 351385. https://doi.org/10.1155/2010/351385.

    Article  CAS  PubMed  Google Scholar 

  19. Chiu, K.C., A. Chu, V.L.W. Go, and M.F. Saad. 2004. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. The American Journal of Clinical Nutrition 79: 820–825. https://doi.org/10.1093/ajcn/79.5.820.

    Article  CAS  PubMed  Google Scholar 

  20. Tzotzas, T., F.G. Papadopoulou, K. Tziomalos, S. Karras, K. Gastaris, P. Perros, et al. 2010. Rising Serum 25-Hydroxy-vitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. The Journal of Clinical Endocrinology & Metabolism 95: 4251–4257. https://doi.org/10.1210/jc.2010-0757.

    Article  CAS  Google Scholar 

  21. Clark, J.D., G.F. Gebhart, J.C. Gonder, M.E. Keeling, and D.F. Kohn. 1997. The 1996 guide for the care and use of laboratory animals. ILAR Journal 38: 41–48. https://doi.org/10.1093/ilar.38.1.41.

    Article  PubMed  Google Scholar 

  22. Wang, P.H., A. Almahfouz, F. Giorgino, K.C. McCowen, and R.J. Smith. 1999. In vivo insulin signaling in the myocardium of streptozotocin-diabetic rats: Opposite effects of diabetes on insulin stimulation of glycogen synthase and c-Fos. Endocrinology 140: 1141–1150. https://doi.org/10.1210/en.140.3.1141.

    Article  CAS  PubMed  Google Scholar 

  23. Hajduch, E., F. Darakhshan, and H.S. Hundal. 1998. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia 41: 821–828. https://doi.org/10.1007/s001250050993.

    Article  CAS  PubMed  Google Scholar 

  24. Matthews, D.R., J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, and R.C. Turner. 1985. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419.

    Article  CAS  Google Scholar 

  25. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:45. https://doi.org/10.1093/NAR/29.9.E45.

  26. Levison, D.A. 1997. Book Reviews :Theory and practice of histological techniques. 4th Edition. The Journal of Pathology 183:243–244. https://doi.org/10.1002/(sici)1096-9896(199710)183:2<243:aid-path770>3.0.co;2-f.

  27. Harrison, S.A. 2006. Liver disease in patients with diabetes mellitus. Journal of Clinical Gastroenterology 40: 68–76. https://doi.org/10.1097/01.mcg.0000190774.91875.d2.

    Article  PubMed  Google Scholar 

  28. El-Serag, H.B., T. Tran, and J.E. Everhart. 2004. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 126: 460–468. https://doi.org/10.1053/j.gastro.2003.10.065.

    Article  PubMed  Google Scholar 

  29. de Marco, R., F. Locatelli, G. Zoppini, G. Verlato, E. Bonora, and M. Muggeo. 1999. Cause-specific mortality in type 2 diabetes: The Verona Diabetes Study. Diabetes Care 22: 756–761. https://doi.org/10.2337/diacare.22.5.756.

    Article  PubMed  Google Scholar 

  30. Islam, M.S., and R.D. Wilson. 2012. Experimentally induced rodent models of type 2 diabetes. Animal Models in Diabetes Research, 161–174. https://doi.org/10.1007/978-1-62703-068-7_10.

  31. Sadeghi, A., M. Beigy, S. Alizadeh, H. Mazloom, S. Vakili, S. Ahmadi, et al. 2017. Synergistic effects of ad-libitum low-dose fructose drinking and low-dose streptozotocin treatment in wistar rats: A mild model of type 2 diabetes. Acta Medica Iranica 55: 304–310.

    PubMed  Google Scholar 

  32. Mohamed, J., A.H. Nazratun Nafizah, A.H. Zariyantey, and S.B. Budin. 2016. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal 16: e132–e141. https://doi.org/10.18295/squmj.2016.16.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ishida, H., M. Takizawa, S. Ozawa, Y. Nakamichi, S. Yamaguchi, H. Katsuta, et al. 2004. Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: Possible protection of beta cells from oxidative stress. Metabolism 53: 488–494.

    Article  CAS  Google Scholar 

  34. Lupi, R., S. Del Guerra, L. Marselli, M. Bugliani, U. Boggi, F. Mosca, et al. 2004. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: Evidence for a role of PPARγ2 in the modulation of insulin secretion. American Journal of Physiology-Endocrinology and Metabolism 286: E560–E567. https://doi.org/10.1152/ajpendo.00561.2002.

    Article  CAS  PubMed  Google Scholar 

  35. Gastaldelli, A., E. Ferrannini, Y. Miyazaki, M. Matsuda, A. Mari, and R.A. DeFronzo. 2007. Thiazolidinediones improve β-cell function in type 2 diabetic patients. American Journal of Physiology-Endocrinology and Metabolism 292: E871–E883. https://doi.org/10.1152/ajpendo.00551.2006.

    Article  CAS  PubMed  Google Scholar 

  36. Kanda, Y., M. Shimoda, S. Hamamoto, K. Tawaramoto, F. Kawasaki, M. Hashiramoto, et al. 2010. Molecular mechanism by which pioglitazone preserves pancreatic beta-cells in obese diabetic mice: Evidence for acute and chronic actions as a PPARgamma agonist. American Journal of Physiology-Endocrinology and Metabolism 298: E278–E286. https://doi.org/10.1152/ajpendo.00388.2009.

    Article  CAS  PubMed  Google Scholar 

  37. Tai, K., A.G. Need, M. Horowitz, and I.M. Chapman. 2008. Vitamin D glucose insulin and insulin sensitivity. Nutrition 24: 279–285. https://doi.org/10.1016/J.NUT.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  38. Hamden, K., S. Carreau, K. Jamoussi, S. Miladi, S. Lajmi, D. Aloulou, et al. 2009. 1Alpha25 dihydroxyvitamin D3: Therapeutic and preventive effects against oxidative stress hepatic pancreatic and renal injury in alloxan-induced diabetes in rats. Journal of Nutritional Science and Vitaminology 55: 215–222.

    Article  CAS  Google Scholar 

  39. Dunlop, T.W., S. Väisänen, C. Frank, F. Molnár, L. Sinkkonen, and C. Carlberg. 2005. The human peroxisome proliferator-activated receptor δ gene is a primary target of 1α,25-dihydroxyvitamin D3 and its nuclear receptor. Journal of Molecular Biology 349: 248–260. https://doi.org/10.1016/j.jmb.2005.03.060.

    Article  CAS  PubMed  Google Scholar 

  40. Shamsi, B.H., C. Ma, S. Naqvi, and Y. Xiao. 2014. Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice. PLoS ONE 9: e106992. https://doi.org/10.1371/journal.pone.0106992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ning, C., L. Liu, G. Lv, Y. Yang, Y. Zhang, R. Yu, et al. 2015. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids in health and disease 14: 1–9. https://doi.org/10.1186/s12944-015-0030-5.

    Article  CAS  Google Scholar 

  42. Zittermann, A., S. Frisch, H.K. Berthold, C. Götting, J. Kuhn, K. Kleesiek, et al. 2009. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. The American Journal of Clinical Nutrition 89: 1321–1327. https://doi.org/10.3945/ajcn.2008.27004.

    Article  CAS  PubMed  Google Scholar 

  43. Chilcott, J., P. Tappenden, M.L. Jones, and J.P. Wight. 2001. A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clinical Therapeutics 23: 1792–1823.

    Article  CAS  Google Scholar 

  44. Mudaliar, S., and R.R. Henry. 2001. New oral therapies for type 2 diabetes mellitus: The glitazones or insulin sensitizers. Annual Review of Medicine 52: 239–257. https://doi.org/10.1146/annurev.med.52.1.239.

    Article  CAS  PubMed  Google Scholar 

  45. Berger, J., and D.E. Moller. 2002. The mechanisms of action of PPARs. Annual Review of Medicine 53: 409–435. https://doi.org/10.1146/annurev.med.53.082901.104018.

    Article  CAS  PubMed  Google Scholar 

  46. Miyazaki, Y., A. Mahankali, M. Matsuda, S. Mahankali, J. Hardies, K. Cusi, et al. 2002. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. Journal of Clinical Endocrinology and Metabolism 87: 2784–2791. https://doi.org/10.1210/jcem.87.6.8567.

    Article  CAS  PubMed  Google Scholar 

  47. Fonseca, V. 2003. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. The American Journal of Medicine 115 (Suppl 8A): 42S-48S. https://doi.org/10.1016/j.amjmed.2003.09.005.

    Article  CAS  PubMed  Google Scholar 

  48. Marcotorchino, J., F. Tourniaire, J. Astier, E. Karkeni, M. Canault, M.-J. Amiot, et al. 2014. Vitamin D protects against diet-induced obesity by enhancing fatty acid oxidation. The Journal of Nutritional Biochemistry 25: 1077–1083. https://doi.org/10.1016/j.jnutbio.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  49. Farhangi, M.A., M. Mesgari-Abbasi, G. Hajiluian, G. Nameni, and P. Shahabi. 2017. Adipose tissue inflammation and oxidative stress: The ameliorative effects of vitamin D. Inflammation 40: 1688–1697. https://doi.org/10.1007/s10753-017-0610-9.

    Article  CAS  PubMed  Google Scholar 

  50. Shi, H., D. Dirienzo, and M.B. Zemel. 2001. Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice. The FASEB Journal 15: 291–293. https://doi.org/10.1096/fj.00-0584fje.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, W., D. Cai, Y. Wang, N. Lin, Q. Hu, Y. Qi, et al. 2013. Calcium plus vitamin D3 supplementation facilitated fat loss in overweight and obese college students with very-low calcium consumption: A randomized controlled trial. Nutrition Journal 12: 8. https://doi.org/10.1186/1475-2891-12-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aghamohammadzadeh, N., M. Niafar, E. Dalir Abdolahinia, F. Najafipour, S.M. Gharebaghi, K. Adabi, et al. 2015. The effect of pioglitazone on weight lipid profile and liver enzymes in type 2 diabetic patients. Therapeutic Advances in Endocrinology and Metabolism 6: 56–60. https://doi.org/10.1177/2042018815574229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Donath, M.Y., and S.E. Shoelson. 2011. Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology 11: 98–107. https://doi.org/10.1038/nri2925.

    Article  CAS  PubMed  Google Scholar 

  54. Nogueira-Machado, J.A., C.M.D.O. Volpe, C.A. Veloso, and M.M. Chaves. 2011. HMGB1 TLR and RAGE: A functional tripod that leads to diabetic inflammation. Expert Opinion on Therapeutic Targets 15: 1023–1035. https://doi.org/10.1517/14728222.2011.575360.

    Article  CAS  PubMed  Google Scholar 

  55. Bugianesi, E., A.J. McCullough, and G. Marchesini. 2005. Insulin resistance: A metabolic pathway to chronic liver disease. Hepatology 42: 987–1000. https://doi.org/10.1002/hep.20920.

    Article  CAS  PubMed  Google Scholar 

  56. Manna, P., J. Das, J. Ghosh, and P.C. Sil. 2010. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS PARP IkappaBalpha/NF-kappaB MAPKs and mitochondria-dependent pathways: Prophylactic role of arjunolic acid. Free Radical Biology and Medicine 48: 1465–1484. https://doi.org/10.1016/j.freeradbiomed.2010.02.025.

    Article  CAS  PubMed  Google Scholar 

  57. Palsamy, P., S. Sivakumar, and S. Subramanian. 2010. Resveratrol attenuates hyperglycemia-mediated oxidative stress proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chemico-biological Interactions 186: 200–210. https://doi.org/10.1016/j.cbi.2010.03.028.

    Article  CAS  PubMed  Google Scholar 

  58. Leclercq, I.A., A. Da Silva Morais, B. Schroyen, N. Van Hul, and A. Geerts. 2007. Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences. Journal of Hepatology 47: 142–156. https://doi.org/10.1016/j.jhep.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  59. Dasu, M.R., S. Devaraj, Z. Ling, D.H. Hwang, and I. Jialal. 2008. High glucose induces toll-like receptor expression in human monocytes: Mechanism of activation. Diabetes 57: 3090–3098.

    Article  CAS  Google Scholar 

  60. Reyna, S.M., S. Ghosh, P. Tantiwong, C.S.R. Meka, P. Eagan, C.P. Jenkinson, et al. 2008. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57: 2595–2602. https://doi.org/10.2337/db08-0038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dasu, M.R., S. Devaraj, S. Park, and I. Jialal. 2010. Increased toll-like receptor activation and TLR ligands in recently diagnosed type 2 diabetes subjects. Diabetes Care 33: 861–868.

    Article  CAS  Google Scholar 

  62. Yerneni, K.K., W. Bai, B.V. Khan, R.M. Medford, and R. Natarajan. 1999. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48: 855–864.

    Article  CAS  Google Scholar 

  63. Yamamoto, Y., and R. Gaynor. 2001. Role of the NF-kB pathway in the pathogenesis of human disease states. Current Molecular Medicine 1: 287–296. https://doi.org/10.2174/1566524013363816.

    Article  CAS  PubMed  Google Scholar 

  64. Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiological Reviews 82: 47–95. https://doi.org/10.1152/physrev.00018.2001.

    Article  PubMed  Google Scholar 

  65. Guerre-Millo, M. 2004. Adipose tissue and adipokines: For better or worse. Diabetes & Metabolism 30: 13–19.

    Article  CAS  Google Scholar 

  66. Dasu, M.R., S. Park, S. Devaraj, and I. Jialal. 2009. Pioglitazone inhibits toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology 150: 3457–3464. https://doi.org/10.1210/en.2008-1757.

    Article  CAS  PubMed  Google Scholar 

  67. Eraky, S.M., N. Abdel-Rahman, and L.A. Eissa. 2018. Modulating effects of omega-3 fatty acids and pioglitazone combination on insulin resistance through toll-like receptor 4 in type 2 diabetes mellitus. Prostaglandins Leukotrienes and Essential Fatty Acids 136: 123–129. https://doi.org/10.1016/j.plefa.2017.06.009.

    Article  CAS  Google Scholar 

  68. Zou, J.-N., J. Xiao, S.-S. Hu, C.-S. Fu, X.-L. Zhang, Z.-X. Zhang, et al. 2017. Toll-like receptor 4 signaling pathway in the protective effect of pioglitazone on experimental immunoglobulin a nephropathy. Chinese Medical Journal 130: 906. https://doi.org/10.4103/0366-6999.204101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sadeghi, K., B. Wessner, U. Laggner, M. Ploder, D. Tamandl, J. Friedl, et al. 2006. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. European Journal of Immunology 36: 361–370. https://doi.org/10.1002/eji.200425995.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, H., Q. Zhang, Y. Chai, Y. Liu, F. Li, B. Wang, et al. 2015. 125(OH)2D3 downregulates the toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. Journal of Endocrinological Investigation 38: 1083–1091. https://doi.org/10.1007/s40618-015-0287-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shoelson, S.E., J. Lee, and M. Yuan. 2003. Inflammation and the IKK β /I κ B/NF- κ B axis in obesity- and diet-induced insulin resistance. International Journal of Obesity 27: S49–S52. https://doi.org/10.1038/sj.ijo.0802501.

    Article  CAS  PubMed  Google Scholar 

  72. Luo, C., H. Yang, C. Tang, G. Yao, L. Kong, H. He, Y. Zhou, et al. 2015. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. International Immunopharmacology 28: 744–750. https://doi.org/10.1016/J.INTIMP.2015.07.018.

    Article  CAS  PubMed  Google Scholar 

  73. Negi, G., and S.S. Sharma. 2015. Inhibition of IκB Kinase (IKK) Protects against peripheral nerve dysfunction of experimental diabetes. Molecular Neurobiology 51 (2): 591–598. https://doi.org/10.1007/S12035-014-8784-8.

    Article  CAS  PubMed  Google Scholar 

  74. Liang, W.J., H.W. Yang, H.N. Liu, W. Qian, and X.L. Chen. 2020. HMGB1 upregulates NF-kB by inhibiting IKB-α and associates with diabetic retinopathy. Life Sciences 241: 117146. https://doi.org/10.1016/J.LFS.2019.117146.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, L., Wang, Z., Jiang, L., Sun, W., Fan, Q., and T. Liu. 2017. Total flavonoids extracted from oxytropis falcata bunge improve insulin resistance through regulation on the IKK β /NF- B inflammatory pathway. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2017/2405124.

  76. Sundararajan, S., and G.E. Landreth. 2004. Antiinflammatory properties of PPARgamma agonists following ischemia. Drug News & Perspectives 17: 229–236.

    Article  CAS  Google Scholar 

  77. Chung, S.W., B.Y. Kang, S.H. Kim, Y.K. Pak, D. Cho, G. Trinchieri, et al. 2000. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB. Journal of Biological Chemistry 275: 32681–32687. https://doi.org/10.1074/jbc.M002577200.

    Article  CAS  Google Scholar 

  78. Liu, X., D. Luo, M. Zheng, Y. Hao, L. Hou, and S. Zhang. 2010. Effect of pioglitazone on insulin resistance in fructose-drinking rats correlates with AGEs/RAGE inhibition and block of NAPDH oxidase and NF kappa B activation. European Journal of Pharmacology 629: 153–158. https://doi.org/10.1016/j.ejphar.2009.11.059.

    Article  CAS  PubMed  Google Scholar 

  79. Cohen-Lahav, M., S. Shany, D. Tobvin, C. Chaimovitz, and A. Douvdevani. 2006. Vitamin D decreases NFκB activity by increasing IκBα levels. Nephrology Dialysis Transplantation 21: 889–897. https://doi.org/10.1093/ndt/gfi254.

    Article  CAS  Google Scholar 

  80. Adeshara, K.A., S.B. Agrawal, S.M. Gaikwad, and R.S. Tupe. 2018. Pioglitazone inhibits advanced glycation induced protein modifications and down-regulates expression of RAGE and NF-κB in renal cells. International Journal of Biological Macromolecules 119: 1154–1163. https://doi.org/10.1016/j.ijbiomac.2018.08.026.

    Article  CAS  PubMed  Google Scholar 

  81. Seif, A.A., and D.M. Abdelwahed. 2014. Vitamin D ameliorates hepatic ischemic/reperfusion injury in rats. Journal of Physiology and Biochemistry 70: 659–666. https://doi.org/10.1007/s13105-014-0335-2.

    Article  CAS  PubMed  Google Scholar 

  82. Farhangi, M.A., M. Mesgari-Abbasi, G. Nameni, G. Hajiluian, and P. Shahabi. 2017. The effects of vitamin D administration on brain inflammatory markers in high fat diet induced obese rats. BMC Neuroscience 18: 81. https://doi.org/10.1186/s12868-017-0400-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mokhtari, Z., Z. Hekmatdoost, and M. Nourian. 2016. Antioxidant efficacy of vitamin D. Journal of Parathyroid Disease 5: 11–16.

    Google Scholar 

  84. Görlach, A., R.P. Brandes, K. Nguyen, M. Amidi, F. Dehghani, and R. Busse. 2000. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circulation Research 87: 26–32.

    Article  Google Scholar 

  85. Zeender, E., K. Maedler, D. Bosco, T. Berney, M.Y. Donath, and P.A. Halban. 2004. Pioglitazone and sodium salicylate protect human β-Cells against apoptosis and impaired function induced by glucose and interleukin-1β. Journal of Clinical Endocrinology & Metabolism 89: 5059–5066. https://doi.org/10.1210/jc.2004-0446.

    Article  CAS  Google Scholar 

  86. Yang, J., J. Wang, S. Zhu, X. Chen, H. Wu, D. Yang, et al. 2008. C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes. Molecular and Cellular Biochemistry 310: 215–226. https://doi.org/10.1007/s11010-007-9683-3.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We kindly thank Dr. Mohamed Abdelraziq (Department of Pathology, Faculty of Veterinary Medicine, Cairo University) for performing the histopathological studies. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hend A. Hamouda. The first draft of the manuscript was written by Hend A. Hamouda, revised, and modified by Suzan M. Mansour. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hend A. Hamouda.

Ethics declarations

Ethics Approval

Animal use and care procedures were approved by the Ethical Committee for Animal Experimentation at Faculty of Pharmacy, Cairo University (Permission number: PT 1049) and concur with the US National Institutes of Health guide for the Care and Use of Laboratory Animals. The article does not include human participants. This part is presented in the “Animals” section in the “MATERIALS AND METHODS”.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest/Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamouda, H.A., Mansour, S.M. & Elyamany, M.F. Vitamin D Combined with Pioglitazone Mitigates Type-2 Diabetes-induced Hepatic Injury Through Targeting Inflammation, Apoptosis, and Oxidative Stress. Inflammation 45, 156–171 (2022). https://doi.org/10.1007/s10753-021-01535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01535-7

KEY WORDS

Navigation