Skip to main content
Log in

Diallyl Disulfide Attenuates STAT3 and NF-κB Pathway Through PPAR-γ Activation in Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We have previously shown that diallyl disulfide (DADS) protects mice against cerulein-induced acute pancreatitis (AP) and associated lung injury. However, the molecular mechanisms underlying its effect and the components involved have not been studied. We hypothesized that DADS may reduce TNF-α, CSE expression, H2S production, STAT3, and NF-κB activation and induce SOCS3 expression through peroxisome proliferator-activated receptor γ (PPAR-γ) pathway in cerulein-induced mice. Male Swiss mice were treated with hourly intraperitoneal injections of cerulein (50 µg/kg) for 6 h. Diallyl disulfide (200 μg/kg) was administered in the presence or absence of PPAR-γ antagonist GW9662 (0.3 mg/kg) (i.p) 1 h after the induction of AP. Our findings revealed that DADS blocked TNF-α, CSE expression, H2S production, and STAT3, and NF-κB activation was reversed by GW9662. Furthermore, GW9662 abrogated DADS-induced SOCS3 expression. The results show for the first that DADS-induced anti-inflammatory effect in acute pancreatitis is regulated through PPAR-γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article and no datasets were generated.

References

  1. Shah, S.S.R., and Jimil. 2006. Acute respiratory distress syndrome in acute pancreatitis, Immunopathologia Persa. 6. https://doi.org/10.34172/ipp.2020.16.

  2. Wu, J., L. Zhang, J. Shi, R. He, W. Yang, A. Habtezion, N. Niu, P. Lu, and J. Xue. 2020. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. eBioMedicine 58: 102920. https://doi.org/10.1016/j.ebiom.2020.102920.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, H., W. Yang, Y. Li, L. Hu, Y. Dai, J. Chen, S. Xu, X. Xu, and H. Jiang. 2018. Astaxanthin ameliorates cerulein-induced acute pancreatitis in mice. International Immunopharmacology. 56: 18–28. https://doi.org/10.1016/j.intimp.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  4. Pendharkar, S.A., R.G. Singh, S.K. Chand, A. Cervantes, and M.S. Petrov. 2018. Pro-inflammatory cytokines after an episode of acute pancreatitis: Associations with fasting gut hormone profile. Inflammation Research. 67: 339–350. https://doi.org/10.1007/s00011-017-1125-4.

    Article  CAS  PubMed  Google Scholar 

  5. Jakkampudi, A., R. Jangala, R. Reddy, S. Mitnala, G.V. Rao, R. Pradeep, D.N. Reddy, and R. Talukdar. 2017. Acinar injury and early cytokine response in human acute biliary pancreatitis. Scientific Reports. 7: 1–13. https://doi.org/10.1038/s41598-017-15479-2.

    Article  CAS  Google Scholar 

  6. Ang, A.D.,  J. Rivers-Auty, A. Hegde, I. Ishii, and M. Bhatia. 2013. The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. AJP: Gastrointestinal and Liver Physiology. 305: G712–G721. https://doi.org/10.1152/ajpgi.00044.2013.

  7. Gaddam, R.R., R. Fraser, A. Badiei, S. Chambers, V.C. Cogger, D.G. Le Couteur, I. Ishii, and M. Bhatia. 2016. Cystathionine-gamma-lyase gene deletion protects mice against inflammation and liver sieve injury following polymicrobial sepsis. PLoS ONE 11: 1–21. https://doi.org/10.1371/journal.pone.0160521.

    Article  CAS  Google Scholar 

  8. Jin, W., and Y. Shen. 2019. Decoction alleviates intestinal injury in rats with severe acute pancreatitis by inhibiting the JAK2-STAT3 signaling pathway. Evidence-Based Complementary and Alternative Medicine. 2019. https://doi.org/10.1155/2019/3909468.

  9. Robinson, K., L. Vona-Davis, D. Riggs, B. Jackson, and D. McFadden. 2006. Peptide YY attenuates STAT1 and STAT3 activation induced by TNF-α in acinar cell line AR42J. Journal of the American College of Surgeons. 202: 788–796. https://doi.org/10.1016/j.jamcollsurg.2006.01.007.

    Article  PubMed  Google Scholar 

  10. Watanabe, T., M. Kudo, and W. Strober. 2017. Immunopathogenesis of pancreatitis. Mucosal Immunology. 10: 283–298. https://doi.org/10.1038/mi.2016.101.

    Article  CAS  PubMed  Google Scholar 

  11. Szatmary, P., and I. Gukovsky. 2016. Angeles, The role of cytokines and inflammation in the genesis of experimental cell recruitment 3 Chemokines which recruit innate immune cells in pancreatitis. Pancreapedia: The Exocrine Pancreas Knowledge Base. 1. https://doi.org/10.3998/PANC.2016.29.

  12. G. 2019. Access, Cystathionine γ lyase – hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. 2–3.

  13. Rao, C.Y., L.Y. Fu, C.L. Hu, D.X. Chen, T. Gan, Y.C. Wang, and X.Y. Zhao. 2015. H2S mitigates severe acute pancreatitis through the PI3K/AKT-NF-kappaB pathway in vivo. World Journal of Gastroenterology. 21: 4555–4563. https://doi.org/10.3748/wjg.v21.i15.4555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tamizhselvi, R., Y.H. Koh, J. Sun, H. Zhang, and M. Bhatia. 2010. Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to caerulein-treated pancreatic acinar cells through NF-κB and Src-family kinases pathway. Experimental Cell Research. 316: 1625–1636. https://doi.org/10.1016/j.yexcr.2010.02.044.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, P., X.L. Lou, and C. Chen. 2016. Apoptotic mechanisms of peroxisome proliferator-activated receptor-γ activation in acinar cells during acute pancreatitis. Pancreas 45: 179–186. https://doi.org/10.1097/MPA.0000000000000495.

    Article  CAS  PubMed  Google Scholar 

  16. Heming, M., S. Gran, S.L. Jauch, L. Fischer-Riepe, A. Russo, L. Klotz, S. Hermann, M. Schäfers, J. Roth, and K. Barczyk-Kahlert. 2018. Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids Frontiers in Immunology. 9. https://doi.org/10.3389/fimmu.2018.00893.

  17. Eun Ah Song, and H.K. Joo Weon Lim. 2017. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated.pdf. 1357–2725.

  18. Yu, W.G., G. Xu, G.J. Ren, X. Xu, H.Q. Yuan, X.L. Qi, and K.L. Tian. 2011. Preventive action of curcumin in experimental acute pancreatitis in mouse. Indian Journal of Medical Research. 134: 717–724.

    Article  CAS  Google Scholar 

  19. Scirpo, R., R. Fiorotto, A. Villani, M. Amenduni, C. Spirili, and M. Strazzabosco. 2016. Stimulation of nuclear receptor PPAR-γ limits NF-kB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62: 1551–1562. https://doi.org/10.1002/hep.28000.Stimulation.

    Article  Google Scholar 

  20. Feng, P. Y., Xu, B. Tong, X. Tong, Y. Bian, S. Zhao, and H. Shen. 2019. Saikosaponin a attenuates hyperlipidemic pancreatitis in rats via the PPAR‑γ/NF‑κB signaling pathway. Experimental and Therapeutic Medicine. 1203–1212. https://doi.org/10.3892/etm.2019.8324.

  21. Qin, M.Z., M.B. Qin, Z.H. Liang, and G.D. Tang. 2019. Effect of SOCS3 on lung injury in rats with severe acute pancreatitis through regulating JAK2/STAT3 signaling pathway. European Review for Medical and Pharmacological Sciences. 23: 10123–10131. https://doi.org/10.26355/eurrev_201911_19582.

  22. Jakkampudi, A., R. Jangala, B.R. Reddy, S. Mitnala, D.N. Reddy, and R. Talukdar. 2016. NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 16: 477–488. https://doi.org/10.1016/j.pan.2016.05.001.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, P., L. Huang, Y. Zhang, M. Qiao, W. Yao, and Y. Yuan. 2011. The antagonist of the JAK-1/STAT-1 signaling pathway improves the severity of cerulein-stimulated pancreatic injury via inhibition of NF-??B activity. International Journal of Molecular Medicine. 27: 731–738. https://doi.org/10.3892/ijmm.2011.632.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, H., Y. Liu, J. Daniluk, S. Gaiser, J. Chu, H. Wang, Z.S. Li, C.D. Logsdon, and B. Ji. 2013. Activation of nuclear factor-κB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology 144: 202–210. https://doi.org/10.1053/j.gastro.2012.09.059.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, W.D., J.L. Zhang, X.Y. Wang, Z.W. Hu, and Y.B. Qian. 2019. The JAK2/STAT3 signaling pathway is required for inflammation and cell death induced by cerulein in AR42J cells. European Review for Medical and Pharmacological Sciences. 23: 1770–1777. https://doi.org/10.26355/eurrev_201902_17139.

  26. Li, M., X. Zhang, B. Wang, X. Xu, X. Wu, M. Guo, and F. Wang. 2018. Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats. Experimental and Therapeutic Medicine. 16: 2013–2021. https://doi.org/10.3892/etm.2018.6433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, Q., L. Bai, S. Luo, T. Wang, F. Yang, J. Xia, H. Wang, K. Ma, M. Liu, S. Wu, H. Wang, S. Guo, X. Sun, and Q. Xiao. 2020. TMEM16A Ca2+-activated Cl− channel inhibition ameliorates acute pancreatitis via the IP3R/Ca2+/NFκB/IL-6 signaling pathway. Journal of Advanced Research. 23: 25–35. https://doi.org/10.1016/j.jare.2020.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji, Z., L. He, A. Regev, and K. Struhl. 2019. Inflammatory regulatory network mediated by the joint action of NF-kB, STAT3, and AP-1 factors is involved in many human cancers. Proceedings of the National Academy of Sciences of the United States of America. 116: 9453–9462. https://doi.org/10.1073/pnas.1821068116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Végran, F., H. Berger, F. Ghiringhelli, and L. Apetoh. 2013. Socs3 induction by PPARγ restrains cancer-promoting inflammation. Cell Cycle 12: 2157–2158. https://doi.org/10.4161/cc.25370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. You, J., X. Shi, H. Liang, J. Ye, L. Wang, H. Han, H. Fang, W. Kang, and T. Wang. 2017. Cystathionine- Y-lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget. 8: 65677–65686. https://doi.org/10.18632/oncotarget.20057.

  31. Boumitri, C., E. Brown, and M. Kahaleh. 2017. Necrotizing pancreatitis: Current management and therapies. Clinical Endoscopy. 50: 357–365. https://doi.org/10.5946/ce.2016.152.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gaman, L., D. Dragos, A. Vlad, G.C. Robu, M.P. Radoi, L. Stroica, M. Badea, and M. Gilca. 2018. Phytoceuticals in acute pancreatitis: targeting the balance between apoptosis and necrosis. Evidence-Based Complementary and Alternative Medicine. 2018. https://doi.org/10.1155/2018/5264592.

  33. Mathan Kumar, M., and R. Tamizhselvi. 2020. Protective effect of diallyl disulfide against cerulein-induced acute pancreatitis and associated lung injury in mice. International Immunopharmacology. 80. https://doi.org/10.1016/j.intimp.2019.106136.

  34. Wang, G., G. Liu, Y. Ye, Y. Fu, and X. Zhang. 2016. Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SGC-7901 cells through inhibition of the PI3K/Akt signaling pathway. Oncology Letters. 11: 2661–2667. https://doi.org/10.3892/ol.2016.4266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bauer, D., N. Redmon, E. Mazzio, E. Taka, J.S. Reuben, A. Day, S. Sadrud-Din, H. Flores-Rozas, K.F.A. Soliman, and S. Darling-Reed. 2015. Diallyl disulfide inhibits TNFα induced CCL2 release through MAPK/ERK and NF-Kappa-B signaling. Cytokine 75: 117–126. https://doi.org/10.1016/j.cyto.2014.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, J., R. Tang, J. Yi, Y. Chen, X. Li, T. Yu, and J. Fei. 2019. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB–NFATc1 signal pathway. FASEB Journal. 33: 7261–7273. https://doi.org/10.1096/fj.201802172R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khatua, T.N., A.K. Dinda, U.K. Putcha, and S.K. Banerjee. 2016. Diallyl disulfide ameliorates isoproterenol induced cardiac hypertrophy activating mitochondrial biogenesis via eNOS-Nrf2-Tfam pathway in rats. Biochemistry and Biophysics Reports. 5: 77–88. https://doi.org/10.1016/j.bbrep.2015.11.008.

    Article  PubMed  Google Scholar 

  38. Ko, J.W., S.H. Jeong, H.J. Kwon, N.R. Shin, Y.S. Seo, J.C. Kim, I.S. Shin, and J.S. Kim. 2018. Preventive effect of garlic oil and its organosulfur component diallyl-disulfide on cigarette smoke-induced airway inflammation in mice. Nutrients 10: 1–12. https://doi.org/10.3390/nu10111659.

    Article  CAS  Google Scholar 

  39. Ju, K.D.,  J.W. Lim, and H. Kim. 2017. Peroxisome proliferator-activated receptor-gamma inhibits the activation of STAT3 in cerulein-stimulated pancreatic acinar cells. 22: 189–194.

  40. Pagliei, B., K. Aquilano, S. Baldelli, and M.R. Ciriolo. 2013. Garlic-derived diallyl disulfide modulates peroxisome proliferator activated receptor gamma co-activator 1 alpha in neuroblastoma cells. Biochemical Pharmacology. 85: 335–344. https://doi.org/10.1016/j.bcp.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  41. Leema, G., and R. Tamizhselvi. 2018. Protective effect of scopoletin against cerulein-induced acute pancreatitis and associated lung injury in mice. Pancreas. 47: 577–585. https://doi.org/10.1097/MPA.0000000000001034.

    Article  CAS  PubMed  Google Scholar 

  42. Mathan Kumar, and M. R. Tamizhselvi. 2020. Protective effect of diallyl disulfide against cerulein-induced acute pancreatitis and associated lung injury in mice. International Immunopharmacology. 80: 106136. https://doi.org/10.1016/j.intimp.2019.106136.

  43. Zhao, C., S. Duquet, and Y.X. Zhou. 1998. Effects of combined use of diallyl disulfide and N-acetyl-cysteine on acetaminophen hepatotoxicity in β-naphthoflavone-pretreated mice. World Journal of Gastroenterology. 4: 112–116.

    Article  CAS  Google Scholar 

  44. Xie, H.,  M. Yang, B. Zhang, M. Liu, and S. Han. 2017. Protective role of TNIP2 in myocardial injury induced by acute pancreatitis and its mechanism. Medical Science Monitor. 23: 5650–5656. https://doi.org/10.12659/MSM.904398.

  45. Yu, W.G., G. Xu, G.J. Ren, X. Xu, H.Q. Yuan, X.L. Qi, and K.L. Tian. 2011. Preventive action of curcumin in experimental acute pancreatitis in mouse. Indian Journal of Medical Research. 134: 717–724. https://doi.org/10.4103/0971-5916.91009.

    Article  CAS  Google Scholar 

  46. Koh, Y.H., R. Tamizhselvi, S. Moochhala, J.S. Bian, and M. Bhatia. 2011. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells. Journal of Cellular and Molecular Medicine. 15: 2139–2149. https://doi.org/10.1111/j.1582-4934.2010.01205.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, H.Y., N.D. Kim, G.Y. Kim, H.J. Hwang, B.W. Kim, W.J. Kim, and Y.H. Choi. 2012. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia. Toxicology and Applied Pharmacology. 262: 177–184. https://doi.org/10.1016/j.taap.2012.04.034.

    Article  CAS  PubMed  Google Scholar 

  48. de Jong, P.R., A.W.L. Schadenberg, T. van den Broek, J.M. Beekman, F. van Wijk, P.J. Coffer, B.J. Prakken, and N.J.G. Jansen. 2012. STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass. PLoS ONE 7: 1–9. https://doi.org/10.1371/journal.pone.0035070.

    Article  CAS  Google Scholar 

  49. Fouad, A.A., H.M. Hafez, and A.A.H. Hamouda. 2020. Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Human and Experimental Toxicology. 39: 77–85. https://doi.org/10.1177/0960327119877437.

    Article  CAS  PubMed  Google Scholar 

  50. Gao, Y., H. Zhao, P. Wang, J. Wang, and L. Zou. 2018. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scandinavian Journal of Immunology. 88: 1–12. https://doi.org/10.1111/sji.12727.

    Article  CAS  Google Scholar 

  51. Yu, J.H., and H. Kim. 2012. Role of janus kinase/signal transducers and activators of transcription in the pathogenesis of pancreatitis and pancreatic cancer. Gut and Liver. 6: 417–422. https://doi.org/10.5009/gnl.2012.6.4.417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Croasdell, A., P.F. Duffney, N. Kim, S.H. Lacy, P.J. Sime, and R.P. Phipps. 2015. PPAR γ and the innate immune system mediate the resolution of inflammation. PPAR Research. 2015. https://doi.org/10.1155/2015/549691.

  53. Rivers, J.R., A. Badiei, and M. Bhatia. 2012. Hydrogen sulfide as a therapeutic target for inflammation. Expert Opinion on Therapeutic Targets. 16: 439–449. https://doi.org/10.1517/14728222.2012.673591.

    Article  CAS  PubMed  Google Scholar 

  54. Ding, J.-L., Z.-G. Zhou, X.-Y. Zhou, B. Zhou, L. Wang, R. Wang, L. Zhan, X.-F. Sun, and Y. Li. 2013. Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats. Pancreas 42: 114–122. https://doi.org/10.1097/mpa.0b013e3182550cc4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Seed Grant from the Vellore Institute of Technology and Technical supported by the Technical Business Incubator of Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

Category 1 Conception and design of study: Dr. R. Tamizhselvi, Acquisition of data: M. Mathan Kumar, Analysis and or interpretation of data: M. Mathan Kumar, Dr. M. Anbalagan, Dr. R. Tamizhselvi, Category 2, Drafting the manuscript: M. Mathan Kumar, Dr. R. Tamizhselvi, Revising the manuscript critically for important intellectual content: Dr. R. Tamizhselvi, Category 3, Approval of the version of the manuscript to be published: M. Mathan Kumar, Dr. R. Tamizhselvi.

Corresponding author

Correspondence to Tamizhselvi Ramasamy.

Ethics declarations

Ethics Approval

Animal ethical approved by Institutional animal ethical committee (Approval No.VIT/IAEC/13/Feb13/22).

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimuthu, M.K., Moorthy, A. & Ramasamy, T. Diallyl Disulfide Attenuates STAT3 and NF-κB Pathway Through PPAR-γ Activation in Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Inflammation 45, 45–58 (2022). https://doi.org/10.1007/s10753-021-01527-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01527-7

KEY WORDS

Navigation