Skip to main content

Advertisement

Log in

Characterization of Circular RNA and microRNA Profiles in Septic Myocardial Depression: a Lipopolysaccharide-Induced Rat Septic Shock Model

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Septic shock with heart dysfunction is common in intensive care units. However, the mechanism underlying myocardial depression is still unclear. Whether circular RNA (circRNA) or microRNA (miRNA) profiles differ between patients with and without myocardial depression is unknown. We generated a hypodynamic septic shock model induced by lipopolysaccharide (LPS) in adolescent rats. A total of 12 rats were utilized and heart tissue from each was collected. RNA sequencing was performed on left ventricular tissue. We focused on features of circRNAs and miRNAs, predicting their function by bioinformatic analysis and constructing circRNA-associated and miRNA-associated regulatory networks in heart tissue. We detected 851 circRNAs in heart samples, and 11 showed differential expression. A total of 639 annotated miRNAs and 91 novel miRNAs were explored including 78 showing differential expression between the two groups. We then constructed the most comprehensive circRNA-associated and miRNA-associated networks to explore their regulatory relationship in septic heart tissue, and demonstrated that different networks could potentially participate in and regulate the pathological process of sepsis. Furthermore, gene ontology term enrichment indicated miRNAs, and miRNA-mRNA networks could be associated with regulation and metabolic process, or influence cellular functions. The construction of regulator networks could improve the understanding of the basic molecular mechanisms underlying myocardial depression. It will be important for future investigations to ascertain the biological mechanisms present during the development of sepsis-induced myocardial depression to influence approaches to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.

    Article  CAS  Google Scholar 

  2. Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 2063.

    Article  CAS  Google Scholar 

  3. Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. De Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. Van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43: 304–377.

    Article  Google Scholar 

  4. Angus, D.C., W.T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M.R. Pinsky. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine 29: 1303–1310.

    Article  CAS  Google Scholar 

  5. Raj, S., J.S. Killinger, J.A. Gonzalez, and L. Lopez. 2014. Myocardial dysfunction in pediatric septic shock. The Journal of Pediatrics 164: 72–77.

    Article  Google Scholar 

  6. Brierley, J., and M.J. Peters. 2008. Distinct hemodynamic patterns of septic shock at presentation to pediatric intensive care. Pediatrics 122: 752–759.

    Article  Google Scholar 

  7. Weiss, S.L., J.C. Fitzgerald, J. Pappachan, D. Wheeler, J.C. Jaramillo-Bustamante, A. Salloo, S.C. Singhi, S. Erickson, J.A. Roy, J.L. Bush, V.M. Nadkarni, and N.J. Thomas. 2015. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. American Journal of Respiratory and Critical Care Medicine 191: 1147–1157.

    Article  Google Scholar 

  8. Jeck, W.R., and N.E. Sharpless. 2014. Detecting and characterizing circular RNAs. Nature Biotechnology 32: 453–461.

    Article  CAS  Google Scholar 

  9. Chen, L.L., and L. Yang. 2015. Regulation of circRNA biogenesis. RNA Biology 12: 381–388.

    Article  Google Scholar 

  10. Memczak, S., M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S.D. Mackowiak, L.H. Gregersen, M. Munschauer, A. Loewer, U. Ziebold, M. Landthaler, C. Kocks, F. le Noble, and N. Rajewsky. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333–338.

    Article  CAS  Google Scholar 

  11. Salzman, J., R.E. Chen, M.N. Olsen, P.L. Wang, and P.O. Brown. 2013. Cell-type specific features of circular RNA expression. PLoS Genetics 9: e1003777.

    Article  CAS  Google Scholar 

  12. Hansen, T.B., T.I. Jensen, B.H. Clausen, J.B. Bramsen, B. Finsen, C.K. Damgaard, and J. Kjems. 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495: 384–388.

    Article  CAS  Google Scholar 

  13. Ho, J., H. Chan, S.H. Wong, M.H. Wang, J. Yu, Z. Xiao, X. Liu, G. Choi, C.C. Leung, W.T. Wong, Z. Li, T. Gin, M.T. Chan, and W.K. Wu. 2016. The involvement of regulatory non-coding RNAs in sepsis: a systematic review. Critical Care 20: 383.

    Article  Google Scholar 

  14. Yang, N., X.L. Shi, B.L. Zhang, J. Rong, T.N. Zhang, W. Xu, and C.F. Liu. 2018. The trend of beta3-adrenergic receptor in the development of septic myocardial depression: a lipopolysaccharide-induced rat septic shock model. Cardiology 139: 234–244.

    Article  CAS  Google Scholar 

  15. Trapnell, C., B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold, and L. Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28: 511–515.

    Article  CAS  Google Scholar 

  16. Zhou, L., J. Chen, Z. Li, X. Li, X. Hu, Y. Huang, X. Zhao, C. Liang, Y. Wang, L. Sun, M. Shi, X. Xu, F. Shen, M. Chen, Z. Han, Z. Peng, Q. Zhai, J. Chen, Z. Zhang, R. Yang, J. Ye, Z. Guan, H. Yang, Y. Gui, J. Wang, Z. Cai, and X. Zhang. 2010. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. Plos One 5: e15224.

    Article  CAS  Google Scholar 

  17. Young, M.D., M.J. Wakefield, G.K. Smyth, and A. Oshlack. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11: R14.

    Article  Google Scholar 

  18. Kanehisa, M., M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Re 36 (Database issue): D480–D484.

    CAS  Google Scholar 

  19. Langmead, B., C. Trapnell, M. Pop, and S.L. Salzberg. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25.

    Article  Google Scholar 

  20. Wen, M., Y. Shen, S. Shi, and T. Tang. 2012. miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13: 140.

    Article  CAS  Google Scholar 

  21. Friedlander, M.R., S.D. Mackowiak, N. Li, W. Chen, and N. Rajewsky. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40: 37–52.

    Article  Google Scholar 

  22. Girardot, T., T. Rimmele, F. Venet, and G. Monneret. 2017. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis 22: 295–305.

    Article  CAS  Google Scholar 

  23. Qi, J., Y. Qiao, P. Wang, S. Li, W. Zhao, and C. Gao. 2012. microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Letters 586: 1201–1207.

    Article  CAS  Google Scholar 

  24. Ma, H., X. Wang, T. Ha, M. Gao, L. Liu, R. Wang, K. Yu, J.H. Kalbfleisch, R.L. Kao, D.L. Williams, and C. Li. 2016. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor kappaB activation and p53-mediated apoptotic signaling. The Journal of Infectious Diseases 214: 1773–1783.

    Article  CAS  Google Scholar 

  25. Levy, M.M., A. Artigas, G.S. Phillips, A. Rhodes, R. Beale, T. Osborn, J.L. Vincent, S. Townsend, S. Lemeshow, and R.P. Dellinger. 2012. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. The Lancet Infectious Diseases 12: 919–924.

    Article  Google Scholar 

  26. Romero-Bermejo, F.J., M. Ruiz-Bailen, J. Gil-Cebrian, and M.J. Huertos-Ranchal. 2011. Sepsis-induced cardiomyopathy. Current Cardiology Reviews 7: 163–183.

    Article  Google Scholar 

  27. Hochstadt, A., Y. Meroz, and G. Landesberg. 2011. Myocardial dysfunction in severe sepsis and septic shock: more questions than answers? Journal of Cardiothoracic and Vascular Anesthesia 25: 526–535.

    Article  Google Scholar 

  28. Sluijter, J.P., and P.A. Doevendans. 2016. Sepsis-associated cardiac dysfunction is controlled by small RNA molecules. Journal of Molecular and Cellular Cardiology 97: 67–69.

    Article  CAS  Google Scholar 

  29. Wang, X., W. Huang, Y. Yang, Y. Wang, T. Peng, J. Chang, C.C. Caldwell, B. Zingarelli, and G.C. Fan. 2014. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochimica et Biophysica Acta 1842: 701–711.

    Article  CAS  Google Scholar 

  30. Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by MicroRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195: 672–682.

    Article  CAS  Google Scholar 

  31. Wang, H., Y. Bei, S. Shen, P. Huang, J. Shi, J. Zhang, Q. Sun, Y. Chen, Y. Yang, T. Xu, X. Kong, and J. Xiao. 2016. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. Journal of Molecular and Cellular Cardiology 94: 43–53.

    Article  Google Scholar 

  32. Zhang, S., D. Zhu, H. Li, H. Li, C. Feng, and W. Zhang. 2017. Characterization of circRNA-associated-ceRNA networks in a senescence-accelerated mouse prone 8 brain. Molecular Therapy 25: 2053–2061.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.N.Z., N.Y., and C.F.L. conceived and designed the study. T.N.Z., T.Z., and W.L.S. performed animal models and heart tissue collection. T.N.Z., N.Y., J.G., K.M., D.L., J.X., R.W., H.Z., and C.F.L performed RNA-seq data analysis and interpretation. T.N.Z., N.Y., J.G., K.M., and C.F.L. wrote the manuscript. All the authors have read and approved the final manuscript. T.N.Z. and N.Y. contributed equally to this work.

Funding

This study was funded by the National Natural Science Foundation of China (No. 81372039), the Natural Science Foundation of Liaoning Province (No. 2017225003, No. 2018108001), and the Science and Technology Foundation of Shenyang (No. F13-220-9-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Feng Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 225 kb)

Supplementary Figure 1

The density distribution of circRNAs in each chromosome of every heart sample. (PDF 6534 kb)

Supplementary Figure 2

The length distribution of miRNAs in each heart sample. (PDF 2962 kb)

Supplementary Figure 3

The density distribution of miRNAs in each chromosome of every heart sample. (PDF 11119 kb)

Supplementary Figure 4

The first nucleotides bias of known miRNA in each heart sample. (PDF 6966 kb)

Supplementary Figure 5

The first nucleotides bias of novel miRNA in each heart sample. (PDF 5539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TN., Yang, N., Goodwin, J.E. et al. Characterization of Circular RNA and microRNA Profiles in Septic Myocardial Depression: a Lipopolysaccharide-Induced Rat Septic Shock Model. Inflammation 42, 1990–2002 (2019). https://doi.org/10.1007/s10753-019-01060-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01060-8

KEY WORDS

Navigation