Skip to main content
Log in

ApoM-S1P Modulates Ox-LDL-Induced Inflammation Through the PI3K/Akt Signaling Pathway in HUVECs

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Studies have shown that apolipoprotein M (apoM), the main carrier of sphingosine-1-phosphate (S1P), is closely related to lipid metabolism and inflammation. While there are many studies on apoM and lipid metabolism, little is known about the role of apoM in inflammation. Atherosclerosis is a chronic inflammatory process. To clarify what role apoM plays in atherosclerosis, we used oxidized low-density lipoprotein (ox-LDL) to induce an inflammatory model of atherosclerosis. Our preliminary results indicate that ox-LDL upregulates the expression of S1P receptor 2 (S1PR2) in human umbilical vein endothelial cells (HUVECs). Ox-LDL-induced HUVECs were treated with apoM-bound S1P (apoM-S1P), free S1P or apoM, and apoM-S1P was found to significantly inhibit the expression of inflammatory factors and adhesion molecules. In addition, apoM-S1P inhibits ox-LDL-induced cellular inflammation via S1PR2. Moreover, apoM-S1P induces phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, preventing nuclear translocation of nuclear factor-κB (NF-κB). PI3K-specific inhibitors and Akt inhibitors suppress apoM-S1P/S1PR2-induced interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release and affect nuclear translocation of NF-κB. In conclusion, the results demonstrate for the first time that apoM-S1P inhibits ox-LDL-induced inflammation in HUVECs via the S1PR2-mediated PI3K/Akt signaling pathway. This finding may aid in the development of new treatments for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borup, A., P.M. Christensen, and L.B. Nielsen. 2015. Apolipoprotein M in lipid metabolism and cardiometabolic diseases. Current Opinion in Lipidology 26: 48–55.

    Article  CAS  PubMed  Google Scholar 

  2. Dahlbäck, B. 2006. Apolipoprotein M--a novel player in high-density lipoprotein metabolism and atherosclerosis. Current Opinion in Lipidology 17: 291–295.

    Article  CAS  PubMed  Google Scholar 

  3. Nádró, B., L. Juhász, A. Szentpéteri, D. Páll, G. Paragh, and M. Harangi. 2018. The role of apolipoprotein M and sphingosine 1-phosphate axis in the prevention of atherosclerosis. Orvosi Hetilap 159: 168–175.

    Article  PubMed  Google Scholar 

  4. Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, and C. Grunfeld. 2007. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199: 19–26.

    Article  CAS  PubMed  Google Scholar 

  5. Ma, X., Y.W. Hu, Z.L. Zhao, L. Zheng, Y.R. Qiu, J.L. Huang, X.J. Wu, X.R. Mao, J. Yang, J.Y. Zhao, S.F. Li, M.N. Gu, and Q. Wang. 2013. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1a-dependent manner. Archives of Biochemistry and Biophysics 533: 1–10.

    Article  CAS  PubMed  Google Scholar 

  6. Christoffersen, C., M. Jauhiainen, M. Moser, B. Porse, C. Ehnholm, M. Boesl, B. Dahlbäck, and L.B. Nielsen. 2008. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J Biol Chem 283: 1839–1847.

    Article  CAS  PubMed  Google Scholar 

  7. Sevvana, M., J. Ahnström, C. Egerer-Sieber, H.A. Lange, B. Dahlbäck, and Y.A. Muller. 2009. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J Biol 393: 920–936.

    CAS  Google Scholar 

  8. Christoffersen, C., H. binata, S.B. Kumaraswamy, S. Galvani, J. Ahnström, M. Sevvana, C. Egerer-Sieber, Y.A. Muller, and T. Hla. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America 108: 9613–9618.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pirillo, A., and G.D. Norata. 2013. LOX-1, oxLDL, and atherosclerosis. Mediators of Inflammation 2013: 152786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vestri, A., F. Pierucci, A. Frati, L. Monaco, and E. Meacci. 2017. Sphingosine 1-phosphate receptors: Do they have a therapeutic potential in cardiac fibrosis? Frontiers in Pharmacology 8: 296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai, W.Q., F.L. Chia, and B.P. Leung. 2012. Sphingosine kinase and sphingosine-1-phosphate receptors: Novel therapeutic targets of rheumatoid arthritis? Future Medicinal Chemistry 4: 727–733.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, H., H. Jin, X. Yue, J. Han, P. Baum, D.R. Abendschein, and Z. Tu. 2017. PET study of sphingosine-1-phosphate receptor 1 expression in response to vascular inflammation in a rat model of carotid injury. Molecular Imaging 6: 1536012116689770.

    Google Scholar 

  13. Miraghazadeh, B., and M.C. Cook. 2018. Nuclear factor-kappaB in autoimmunity: Man and mouse. Frontiers in Immunology 9: 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnston, T.P. 2009. Poloxamer 407 increases soluble adhesion molecules, ICAM-1, VCAM-1 and E-selectin, in C57BL/6 mice. The Journal of Pharmacy and Pharmacology 61: 1681–1688.

    CAS  PubMed  Google Scholar 

  15. Pyne, N.J., M. McNaughton, S. Boomkamp, N. MacRitchie, C. Evangelisti, A.M. Martelli, H.R. Jiang, S. Ubhi, and S. Pyne. 2016. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Advances in Biological Regulation 60: 151–159.

    Article  CAS  PubMed  Google Scholar 

  16. Ren, K., Y.J. Lu, Z.C. Mo, X. Liu, Z.L. Tang, Y. Jiang, X.S. Peng, L. Li, Q.H. Zhang, and G.H. Yi. 2017. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. Journal of Physiology and Biochemistry 73: 287–296.

    Article  CAS  PubMed  Google Scholar 

  17. Hamed, S. 2006. Endothelial progenitor cells and atherosclerosis. Harefuah 145: 358–361.

    PubMed  Google Scholar 

  18. Berliner, J.A., and J.W. Heinecke. 1996. The role of oxidized lipoproteins in atherosclerosis. Free Radical Biology & Medicine 20: 707–727.

    Article  CAS  Google Scholar 

  19. Obinata, H. 2012. Sphingosine 1-phosphate in coagulation and inflammation. Seminars in Immunopathology 34: 73–91.

    Article  CAS  PubMed  Google Scholar 

  20. Du, J., C. Zeng, Q. Li, B. Chen, H. Liu, X. Huang, and Q. Huang. 2012. LPS and TNF-α induce expression of sphingosine-1-phosphate receptor-2 in human microvascular endothelial cells. Pathology, Research and Practice 208: 82–88.

    Article  CAS  PubMed  Google Scholar 

  21. Kosmas, C.E., I. Martinez, A. Sourlas, K.V. Bouza, F.N. Campos, V. Torres, P.D. Montan, and E. Guzman. 2018. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 7: 212525.

    PubMed  PubMed Central  Google Scholar 

  22. Hait, N.C., C.A. Oskeritzian, S.W. Paugh, S. Milstien, and S. Spiegel. 2006. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochimica et Biophysica Acta 1758: 2016–2026.

    Article  CAS  PubMed  Google Scholar 

  23. Książek, M., M. Chacińska, A. Chabowski, and M. Baranowski. 2015. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. Journal of Lipid Research 56: 1271–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spiegel, S., and S. Milstien. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nature Reviews. Molecular Cell Biology 4: 397–407.

    Article  CAS  PubMed  Google Scholar 

  25. Luo, G., X. Zhang, and P. Nilsson-Ehle. 2004. Apolipoprotein M. Lipids in Health and Disease 3: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurano, M., K. Tsuneyama, Y. Morimoto, T. Shimizu, M. Jona, H. Kassai, K. Nakao, A. Aiba, and Y. Yatomi. 2018. Apolipoprotein M protects lipopolysaccharide-treated mice from death and organ injury. Thrombosis and Haemostasis 118: 1021–1035.

    Article  PubMed  Google Scholar 

  27. Jiang, Y., L.L. Jiang, X.M. Maimaitirexiati, Y. Zhang, and L. Wu. 2015. Irbesartan attenuates TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. European Review for Medical and Pharmacological Sciences 19: 3295–3302.

    CAS  PubMed  Google Scholar 

  28. Osborn, L., C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb. 1989. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59: 1203–1211.

    Article  CAS  PubMed  Google Scholar 

  29. Takuwa, Y., Y. Okamoto, and K. Yoshioka. 2012. Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors 38: 329–337.

    Article  CAS  PubMed  Google Scholar 

  30. Brown, J.D., C.Y. Lin, Q. Duan, G. Griffin, A. Federation, R.M. Paranal, S. Bair, G. Newton, A. Lichtman, A. Kung, T. Yang, and H. Wang. 2014. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Molecular Cell 56: 219–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors sincerely acknowledge the financial assistance provided by the National Natural Science Foundation of China (No. 81770490) and the Construct Program of the Key Discipline in Hunan Province (Basic Medicine Sciences in University of South China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Yi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Fig. 1

Effect of apoM-albumin on inflammatory factors and adhesion factors induced by ox-LDL in endothelial cells. a Western blotting was used to detect the expression of IL-1β and TNF-α. (PNG 148 kb)

High Resolution Image (TIF 902 kb)

Supplementary Fig. 2

Effect of different concentrations of apoM-S1P on ox-LDL-induced inflammation of HUVECs. a Western blotting was used to detect the release of ICAM-1 and VCAM-1 in ox-LDL-induced HUVECs by apoM-S1P at different concentrations. * P < 0.05 vs. control group, n = 3. (PNG 131 kb)

High Resolution Image (TIF 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Zeng, Y., Zhu, X. et al. ApoM-S1P Modulates Ox-LDL-Induced Inflammation Through the PI3K/Akt Signaling Pathway in HUVECs. Inflammation 42, 606–617 (2019). https://doi.org/10.1007/s10753-018-0918-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0918-0

KEY WORDS

Navigation