Skip to main content
Log in

ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial dysfunction plays a vital role during the initial stage of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) induces vascular endothelial injury and vessel wall inflammation. Sphingosine-1-phosphate (S1P) exerts numerous vasoprotective effects by binding to diverse S1P receptors (S1PRs; S1PR1-5). A number of studies have shown that in endothelial cells (ECs), S1PR2 acts as a pro-atherosclerotic mediator by stimulating vessel wall inflammation through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Scavenger receptor class B member I (SR-BI), a high-affinity receptor for apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL), inhibits nuclear factor-κB (NF-κB) translocation and decreases the plasma levels of inflammatory mediators via the PI3K/Akt pathway. We hypothesized that the inflammatory effects of S1P/S1PR2 on ECs may be regulated by apoA-I/SR-BI. The results showed that ox-LDL, a pro-inflammatory factor, augmented the S1PR2 level in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. In addition, S1P/S1PR2 signaling influenced the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10, aggravating inflammation in HUVECs. Moreover, the pro-inflammatory effects induced by S1P/S1PR2 were attenuated by SR-BI overexpression and enhanced by an SR-BI inhibitor, BLT-1. Further experiments showed that the PI3K/Akt signaling pathway was involved in this process. Taken together, these results demonstrate that apoA-I/SR-BI negatively regulates S1P/S1PR2-mediated inflammation in HUVECs by activating the PI3K/Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ox-LDL:

Oxidized low-density lipoprotein

S1P:

Sphingosine-1-phosphate

HDL:

High-density lipoprotein

S1PR:

S1P receptor

ECs:

Endothelial cells

PI3K:

Phosphatidylinositol 3-kinase

SR-BI:

Scavenger receptor class B member 1

Apo:

Apolipoprotein

NF-κB:

Nuclear factor-κB

HUVECs:

Human umbilical vein endothelial cells

TNF:

Tumor necrosis factor

IL:

Interleukin

RCT:

Reverse cholesterol transport

GPCR:

G-protein coupled receptor

VSMC:

Vascular smooth muscle cell

apoE−/−:

apoE deficient

S1PR2−/−:

S1PR2 deficient

S1PR2+/+:

S1PR2 non-deficient

IFN:

Interferon

MCP-1:

Monocyte chemotactic protein-1

VCAM-1:

Vascular cell adhesion molecule 1

ICAM-1:

Intercellular cell adhesion molecule-1

HDL-C:

HDL-cholesterol

HCAECs:

Human coronary artery endothelial cells

NO:

Nitric oxide

eNOS:

Endothelial nitric oxide synthase

PMN:

Polymorphonuclear neutrophil

MSCs:

Mesenchymal stem cells

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal bovine serum

p-PI3K:

Phosphorylated PI3K

p-Akt:

Phosphorylated Akt

ATCC:

American Type Culture Collection

PBS:

Phosphate-buffered saline

BSA:

Bovine serum albumin

HPLC:

High-performance liquid chromatography

alb-S1P:

Albumin-bound S1P

PMSF:

Phenylmethylsulfonyl fluoride

PVDF:

Polyvinylidene difluoride

ECL:

Enhanced chemiluminescence

RT-PCR:

Real-time quantitative polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  CAS  PubMed  Google Scholar 

  2. Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82–91

    Article  CAS  PubMed  Google Scholar 

  3. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiVito C, Abdel Hadi L, Navone SE, Marfia G, Campanella R, Mancuso ME & Riboni L. (2016). Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. Platelets, 1–9

  5. English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 14:2255–2265

    Article  CAS  PubMed  Google Scholar 

  6. Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlback B, Kono M, Proia RL, Smith JD, Hla T (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 8:ra79

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354

    Article  CAS  PubMed  Google Scholar 

  8. Karuna R, Park R, Othman A, Holleboom AG, Motazacker MM, Sutter I, Kuivenhoven JA, Rohrer L, Matile H, Hornemann T, Stoffel M, Rentsch KM, von Eckardstein A (2011) Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis 219:855–863

    Article  CAS  PubMed  Google Scholar 

  9. Levkau B (2015) HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol 6:243

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu W, Liu B, Liu S, Zhang J, Lin S (2016) Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition. Eur J Pharmacol 776:19–25

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Xiong SL, Yi GH (2012) ABCA1, ABCG1, and SR-BI: transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 413:384–390

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michaud J, Im DS, Hla T (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol 184:1475–1483

    Article  CAS  PubMed  Google Scholar 

  14. Mo ZC, Ren K, Liu X, Tang ZL & Yi GH. (2016). A high-density lipoprotein-mediated drug delivery system. Adv Drug Deliv Rev

  15. Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E, Sattler W (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277:42781–42789

    Article  CAS  PubMed  Google Scholar 

  16. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    Article  CAS  PubMed  Google Scholar 

  17. Podrez EA (2010) Anti-oxidant properties of high-density lipoprotein and atherosclerosis. Clin Exp Pharmacol Physiol 37:719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M (1997) A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A 94:12610–12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  CAS  PubMed  Google Scholar 

  20. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420

    Article  CAS  PubMed  Google Scholar 

  21. Sattler K, Levkau B (2009) Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 82:201–211

    Article  CAS  PubMed  Google Scholar 

  22. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739

    Article  CAS  PubMed  Google Scholar 

  23. Skoura A, Michaud J, Im DS, Thangada S, Xiong Y, Smith JD, Hla T (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 31:81–85

    Article  CAS  PubMed  Google Scholar 

  24. Song GJ, Kim SM, Park KH, Kim J, Choi I, Cho KH (2015) SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochem Biophys Res Commun 457:112–118

    Article  CAS  PubMed  Google Scholar 

  25. Takashima S, Sugimoto N, Takuwa N, Okamoto Y, Yoshioka K, Takamura M, Takata S, Kaneko S, Takuwa Y (2008) G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase. Cardiovasc Res 79:689–697

    Article  CAS  PubMed  Google Scholar 

  26. Vaisman BL, Vishnyakova TG, Freeman LA, Amar MJ, Demosky SJ, Liu C, Stonik JA, Sampson ML, Pryor M, Bocharov AV, Eggerman TL, Patterson AP, Remaley AT (2015) Endothelial expression of scavenger receptor class B, type I protects against development of atherosclerosis in mice. Biomed Res Int 2015:607120

    Article  PubMed  PubMed Central  Google Scholar 

  27. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang F, Okamoto Y, Inoki I, Yoshioka K, Du W, Qi X, Takuwa N, Gonda K, Yamamoto Y, Ohkawa R, Nishiuchi T, Sugimoto N, Yatomi Y, Mitsumori K, Asano M, Kinoshita M, Takuwa Y (2010) Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest 120:3979–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu J, Qian J, Xie X, Lin L, Ma J, Huang Z, Fu M, Zou Y, Ge J (2012) High density lipoprotein cholesterol promotes the proliferation of bone-derived mesenchymal stem cells via binding scavenger receptor-B type I and activation of PI3K/Akt, MAPK/ERK1/2 pathways. Mol Cell Biochem 371:55–64

    Article  CAS  PubMed  Google Scholar 

  30. Zhang QH, Zu XY, Cao RX, Liu JH, Mo ZC, Zeng Y, Li YB, Xiong SL, Liu X, Liao DF, Yi GH (2012) An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells. Biochem Biophys Res Commun 420:17–23

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, An J, Jawadi H, Siow DL, Lee JF, Zhao J, Gartung A, Maddipati KR, Honn KV, Wattenberg BW, Lee MJ (2013) Sphingosine-1-phosphate receptor-2 mediated NFkappaB activation contributes to tumor necrosis factor-alpha induced VCAM-1 and ICAM-1 expression in endothelial cells. Prostaglandins Other Lipid Mediat 106:62–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Nos. 81270360 and 81670401), the Scientific Research Fund of the Hunan Provincial Education Department (13C838), the Science and Technology Planning Project of the Hunan Provincial Science and Technology Department (2014FJ2012), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2008-244), and the construct program of the key discipline in Hunan Province (2011-76).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hui Yi.

Additional information

Kun Ren and Yan-Ju Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, K., Lu, YJ., Mo, ZC. et al. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. J Physiol Biochem 73, 287–296 (2017). https://doi.org/10.1007/s13105-017-0553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0553-5

Keywords

Navigation