Skip to main content

Advertisement

Log in

The Role of SIRT1 in Autophagy in Lipopolysaccharide-Induced Mouse Type II Alveolar Epithelial Cells

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Silent mating type information regulation 2 homolog-1 (SIRT1) is involved in a wide range of cellular processes because of its role as a deacetylated histone and its association with a variety of transcription factors. SIRT1 has essential roles in autophagy, including in the formation of autophagic vacuoles and the assembly of autophagy-related gene (ATG) protein complexes. The present study focused on the role of SIRT1 in autophagy in lipopolysaccharide (LPS)-induced mouse type II alveolar epithelial cells (AECII). We designed experiments using SIRT1-overexpressing mice and wild-type mice, and AECII were isolated from these two types of mouse for in vitro LPS injury trials. Our results suggest that levels of the autophagy proteins, Beclin1 and LC3B, as well as those of the inflammatory factors, IL-6 and TNF-α, were increased in LPS-induced mouse AECII, and that SIRT1 protected against damage in mice with acute respiratory distress syndrome and in mouse AECII in vitro following LPS treatment. Subsequently, we screened multiple inflammatory, apoptotic, and unclassified genes (including Atg7), which interacted with SIRT1 in LPS-injured mouse AECII, as assessed by mRNA microarray analysis. These results demonstrate that LPS can reduce the levels of SIRT1 and ATG7 in vivo and in vitro and indicate that SIRT1 is involved in autophagy through regulation of ATG7 in AECII in response to LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SIRT1:

silent mating type information regulation 2 homolog-1

ARDS:

acute respiratory distress syndrome

HDACs:

histone deacetylases

NAD+:

nicotinamide adenine dinucleotide

AECII:

type II alveolar epithelial cells

LPS:

lipopolysaccharide

SP-C:

surfactant-associated protein C

IL-6:

interleukin-6

TNF-α:

tumor necrosis factoralpha

HE:

hematoxylin and eosin

ATG7:

autophagy-related gene protein 7

References

  1. Xiao, B., J. Xu, G. Wang, P. Jiang, F. Fang, J. Huang, and J. Wang. 2011. Troglitazone-activated PPARgamma inhibits LPS-induced lung alveolar type II epithelial cells injuries via TNF-alpha. Molecular Biology Reports 38: 5009–5015.

    Article  CAS  Google Scholar 

  2. Walkey, A.J., R. Summer, V. Ho, and P. Alkana. 2012. Acute respiratory distress syndrome: Epidemiology and management approaches. Clin Epidemiol 4: 159–169.

    Article  Google Scholar 

  3. Beasley, M.B. 2010. The pathologist's approach to acute lung injury. Archives of Pathology & Laboratory Medicine 134: 719–727.

    Google Scholar 

  4. Choi, A.M., S.W. Ryter, and B. Levine. 2013. Autophagy in human health and disease. The New England Journal of Medicine 368: 1845–1846.

    Article  CAS  Google Scholar 

  5. de la Vega, M.R., M. Dodson, C. Gross, H. Manzour, R.C. Lantz, E. Chapman, T. Wang, S.M. Black, J.G. Garcia, and D.D. Zhang. 2016. Role of Nrf2 and autophagy in acute lung injury. Current Pharmacology Reports 2: 91–101.

    Article  Google Scholar 

  6. Meng, X., J. Tan, M. Li, S. Song, Y. Miao, and Q. Zhang. 2017. Sirt1: Role under the condition of ischemia/hypoxia. Cellular and Molecular Neurobiology 37: 17–28.

    Article  CAS  Google Scholar 

  7. Hwang, J.W., H. Yao, S. Caito, I.K. Sundar, and I. Rahman. 2013. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radical Biology & Medicine 61: 95–110.

    Article  CAS  Google Scholar 

  8. Lin, S.J., P.A. Defossez, and L. Guarente. 2000. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128.

    Article  CAS  Google Scholar 

  9. Bordone, L., and L. Guarente. 2005. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nature Reviews. Molecular Cell Biology 6: 298–305.

    Article  CAS  Google Scholar 

  10. Lee, I.H., L. Cao, R. Mostoslavsky, D.B. Lombard, J. Liu, N.E. Bruns, M. Tsokos, F.W. Alt, and T. Finkel. 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proceedings of the National Academy of Sciences of the United States of America 105: 3374–3379.

    Article  CAS  Google Scholar 

  11. Salminen, A., and K. Kaarniranta. 2009. SIRT1: Regulation of longevity via autophagy. Cellular Signalling 21: 1356–1360.

    Article  CAS  Google Scholar 

  12. Dong, S., C. Jia, S. Zhang, G. Fan, Y. Li, P. Shan, L. Sun, W. Xiao, L. Li, Y. Zheng, J. Liu, H. Wei, C. Hu, W. Zhang, Y.E. Chin, Q. Zhai, Q. Li, J. Liu, F. Jia, Q. Mo, D.P. Edwards, S. Huang, L. Chan, B.W. O'Malley, X. Li, and C. Wang. 2013. The REGgamma proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metabolism 18: 380–391.

    Article  CAS  Google Scholar 

  13. Chen, J.K., W.C. Wang, L. Zang, J. Zhao, W. Li, and T. Jiang. 2016. Repression of a chromatin modifier aggravates lipopolysaccharide-induced acute lung injury in mouse. Biochemical and Biophysical Research Communications 471: 515–521.

    Article  CAS  Google Scholar 

  14. Li, S., G. Zhao, L. Chen, Y. Ding, J. Lian, G. Hong, and Z. Lu. 2016. Resveratrol protects mice from paraquat-induced lung injury: The important role of SIRT1 and NRF2 antioxidant pathways. Molecular Medicine Reports 13: 1833–1838.

    Article  CAS  Google Scholar 

  15. Bai, X., L. Fan, T. He, W. Jia, L. Yang, J. Zhang, Y. Liu, J. Shi, L. Su, and D. Hu. 2015. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling. Scientific Reports 5: 10277.

    Article  Google Scholar 

  16. Pfluger, P.T., D. Herranz, S. Velasco-Miguel, M. Serrano, and M.H. Tschop. 2008. Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences of the United States of America 105: 9793–9798.

    Article  CAS  Google Scholar 

  17. Wang, J., T.H. Kim, M.Y. Ahn, J. Lee, J.H. Jung, W.S. Choi, B.M. Lee, K.S. Yoon, S. Yoon, and H.S. Kim. 2012. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. International Journal of Oncology 41: 1101–1109.

    Article  CAS  Google Scholar 

  18. Hernandez-Jimenez, M., O. Hurtado, M.I. Cuartero, I. Ballesteros, A. Moraga, J.M. Pradillo, M.W. McBurney, I. Lizasoain, and M.A. Moro. 2013. Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44: 2333–2337.

    Article  CAS  Google Scholar 

  19. Leng, S., M.A. Picchi, Y. Liu, C.L. Thomas, D.G. Willis, A.M. Bernauer, T.G. Carr, P.T. Mabel, Y. Han, C.I. Amos, Y. Lin, C.A. Stidley, F.D. Gilliland, M.R. Jacobson, and S.A. Belinsky. 2013. Genetic variation in SIRT1 affects susceptibility of lung squamous cell carcinomas in former uranium miners from the Colorado plateau. Carcinogenesis 34: 1044–1050.

    Article  CAS  Google Scholar 

  20. Ware, L.B., and M.A. Matthay. 2001. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 163: 1376–1383.

    Article  CAS  Google Scholar 

  21. Yao, H., J.W. Hwang, I.K. Sundar, A.E. Friedman, M.W. McBurney, L. Guarente, W. Gu, V.L. Kinnula, and I. Rahman. 2013. SIRT1 redresses the imbalance of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9 in the development of mouse emphysema and human COPD. American Journal of Physiology. Lung Cellular and Molecular Physiology 305: L615–L624.

    Article  CAS  Google Scholar 

  22. Zeng, X.Y., W. Yuan, L. Zhou, S.X. Wang, Y. Xie, and Y.J. Fu. 2017. Forsythoside a exerts an anti-endotoxin effect by blocking the LPS/TLR4 signaling pathway and inhibiting Tregs in vitro. International Journal of Molecular Medicine 40: 243–250.

    Article  CAS  Google Scholar 

  23. Lo, S., S.S. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, P.H. Lee, and Y.C. Hsieh. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257: 352–363.

    Article  Google Scholar 

  24. Sun, Y., C. Li, Y. Shu, X. Ju, Z. Zou, H. Wang, S. Rao, F. Guo, H. Liu, W. Nan, Y. Zhao, Y. Yan, J. Tang, C. Zhao, P. Yang, K. Liu, S. Wang, H. Lu, X. Li, L. Tan, R. Gao, J. Song, X. Gao, X. Tian, Y. Qin, K.F. Xu, D. Li, N. Jin, and C. Jiang. 2012. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Science Signaling 5: a16.

    Article  Google Scholar 

  25. Ryter, S.W., and A.M. Choi. 2010. Autophagy in the lung. Proceedings of the American Thoracic Society 7: 13–21.

    Article  Google Scholar 

  26. Feng, Y., Z. Yao, and D.J. Klionsky. 2015. How to control self-digestion: Transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends in Cell Biology 25: 354–363.

    Article  CAS  Google Scholar 

  27. Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nature Reviews. Molecular Cell Biology 10: 458–467.

    Article  CAS  Google Scholar 

  28. Xiong, J. 2015. Atg7 in development and disease: Panacea or Pandora’s box? Protein & Cell 6: 722–734.

    Article  CAS  Google Scholar 

  29. Chang, J., W. Wang, H. Zhang, Y. Hu, M. Wang, and Z. Yin. 2013. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. International Journal of Molecular Medicine 32: 1311–1318.

    Article  CAS  Google Scholar 

  30. Li, S., L. Guo, P. Qian, Y. Zhao, A. Liu, F. Ji, L. Chen, X. Wu, and G. Qian. 2015. Lipopolysaccharide induces Autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cellular Physiology and Biochemistry 36: 2403–2417.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by The National Natural Science Fund, China (81370167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal experiments were conducted in accordance with National Guidelines for the Care and Use of Laboratory Animals and were authorized by the Third Military Medical University Bioethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lv, X., Dong, W. et al. The Role of SIRT1 in Autophagy in Lipopolysaccharide-Induced Mouse Type II Alveolar Epithelial Cells. Inflammation 41, 2222–2235 (2018). https://doi.org/10.1007/s10753-018-0865-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0865-9

KEY WORDS

Navigation